题目内容

设F1,F2为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的焦点,过F1且垂直于x轴的直线与椭圆交于A,B两点,若△ABF2为锐角三角形,则该椭圆离心率e的取值范围是 ______.
由题意知∠AF2F1  小于45°,故 tan∠AF2F1  ;=
|AF1|
|F1F2|
<1,即  
b2
a
2c
<1,
b2<2ac,a2-c2<2ac,e2+2e-1>0,∴e>
2
-1,或 e<-1-
2
 (舍去).
又 0<e<1,故有  
2
-1<e<1,
故答案为:
2
-1<e<1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网