题目内容

10.已知下列命题:①若$\overrightarrow{a}•\overrightarrow{b}$<0,则$\overrightarrow{b}$与$\overrightarrow{a}$的夹角为钝角;②a,b∈C,则“ab∈R”是“a,b互为共轭复数”的必要非充分条件;③一个骰子连续投2次,点数和为4的概率为$\frac{1}{9}$;④若n为正奇数,则6n+${C}_{n}^{1}{6}^{n-1}$+${C}_{n}^{2}{6}^{n-2}$+…+${C}_{n}^{n-1}6-1$被8除的余数是5,其中正确的序号是②④.

分析 ①由$\overrightarrow{a}•\overrightarrow{b}$<0,可知$\overrightarrow{b}$与$\overrightarrow{a}$的夹角为钝角或180°判断;
②举例说明不充分,由$z•\overline{z}=|z{|}^{2}$说明必要;
③是一个古典概型,试验发生包含的基本事件共6×6个,满足条件的事件是点数和为4的可以列举出有(1,3)、(2,2)、(3,1)共3个,根据古典概型概率公式得到点数和为4的概率判断;
④由二项式定理,可以将6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6-1变形为Cn0•8n-Cn1•8n-1+…+(-1)n-1Cnn-1•8+(-1)nCnn-2,又由n为正奇数,则可得6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6-1=Cn0•8n-Cn1•8n-1+…+(-1)n-1Cnn-1•8-3,分析可得命题正确.

解答 解:①若$\overrightarrow{a}•\overrightarrow{b}$<0,则$\overrightarrow{b}$与$\overrightarrow{a}$的夹角为钝角或180°.故①错误;
②a,b∈C,取a=1,b=2,满足ab∈R,a,b不互为共轭复数,反之,若a,b互为共轭复数,则ab=|a|2∈R,
则“ab∈R”是“a,b互为共轭复数”的必要非充分条件.故②正确;
③试验发生包含的基本事件共6×6=36个,满足条件的事件是点数和为4,列举出有(1,3)、(2,2)、(3,1)共3个,
∴一个骰子连续投2次,点数和为4的概率为$\frac{1}{12}$.故③错误;
④6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6-1
=6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6+Cnn-2
=(6+1)n-2=7n-2=(8-1)n-2
=Cn0•8n-Cn1•8n-1+…+(-1)n-1Cnn-1•8+(-1)nCnn-2,
又由n为正奇数,则6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6-1=Cn0•8n-Cn1•8n-1+…+(-1)n-1Cnn-1•8-3,
且Cn0•8n-Cn1•8n-1+…+(-1)n-1Cnn-1•8可以被8整除,
∴6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6-1被8除所得的余数是5.故④正确.
∴正确命题的序号是②④.
故答案为:②④.

点评 本题考查命题的真假判断与应用,考查了平面向量的数量积运算,考查共轭复数的概念,训练了古典概型概率的求法,训练了利用二项式定理判断整除问题,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网