题目内容
18.在[0,π]上随机取一个数x,则事件“2sin$\frac{x}{2}$cos$\frac{x}{2}$+cosx≥$\frac{\sqrt{6}}{2}$”发生的概率为( )| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
分析 先化简不等式,确定满足sin(x+$\frac{π}{4}$)≥$\frac{\sqrt{3}}{2}$且在区间[0,π]内x的范围,根据几何概型利用长度之比可得结论.
解答 解:∵2sin$\frac{x}{2}$cos$\frac{x}{2}$+cosx≥$\frac{\sqrt{6}}{2}$,
即sinx+cosx≥$\frac{\sqrt{6}}{2}$,
即$\sqrt{2}$sin(x+$\frac{π}{4}$)≥$\frac{\sqrt{6}}{2}$,
∴sin(x+$\frac{π}{4}$)≥$\frac{\sqrt{3}}{2}$,
又∵x∈[0,π],∴x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{4}$],
∴在区间[$\frac{π}{4}$,$\frac{5π}{4}$]内,满足sin(x+$\frac{π}{4}$)≥$\frac{\sqrt{3}}{2}$时,
x+$\frac{π}{4}$∈[$\frac{π}{3}$,$\frac{2π}{3}$],
∴在区间[0,π]内,满足sin(x+$\frac{π}{4}$)≥$\frac{\sqrt{3}}{2}$时,
x∈[$\frac{π}{12}$,$\frac{5π}{12}$];
∴事件“2sin$\frac{x}{2}$cos$\frac{x}{2}$+cosx≥$\frac{\sqrt{6}}{2}$”发生的概率为
P=$\frac{\frac{5π}{12}-\frac{π}{12}}{π-0}$=$\frac{1}{3}$.
故选:B.
点评 本题考查了几何概型与三角函数的图象与性质的应用问题,是综合性题目.
练习册系列答案
相关题目
8.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线与圆(x-2)2+y2=3相切,则双曲线的离心率为( )
| A. | $\frac{2\sqrt{2}}{3}$ | B. | $\frac{\sqrt{7}}{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
9.已知等差数列{an}的前n项和Sn满足S3=0,S5=5,则an=( )
| A. | 2-n | B. | n-2 | C. | -2-n | D. | n+2 |
6.已知复数z=2+i(i是虚数单位),则|$\overline{z}$|等于( )
| A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | 3 | D. | 5 |
13.设复数z满足$\frac{1-z}{1+z}$=i,则z的虚部为( )
| A. | -2 | B. | 0 | C. | -1 | D. | 1 |
8.我国延迟退休年龄将借鉴国外经验,拟对不同群体采取差别措施,并以“小步慢走”的方式实施.现对某市工薪阶层关于“延迟退休年龄”的态度进行调查,随机抽调查50人,他们月收入的频数分布及对“延迟退休年龄”反对人数如下表:
(1)由以上统计数据估算月收入低于5500的调查对象中,持反对态度的概率;
(2)若参加此次调查的人中,有9人为统计局工作人员,现在要从这9人中,随机选出2人统计调查结果,求其中a,b两人至少有1人入选的概率.
| 月收入(元) | [1500,2500) | [2500,3500) | [3500,4500) | [4500,5500) | [5500,6500) | [6500,7500) |
| 频数 | 5 | 10 | 14 | 11 | 6 | 4 |
| 反对人数 | 4 | 8 | 11 | 6 | 2 | 1 |
(2)若参加此次调查的人中,有9人为统计局工作人员,现在要从这9人中,随机选出2人统计调查结果,求其中a,b两人至少有1人入选的概率.