题目内容
11.若函数f(x)=ex+ax2 无极值点,则a的取值范围是$[-\frac{e}{2},0]$.分析 求出f(x)的导数,可得ex=-2ax至多一个实数解,设g(x)=ex,h(x)=-2ax,求出y=g(x)的过原点的切线方程,可得切线的斜率,由题意可得a的不等式,即可得到a的范围.
解答 解:函数f(x)=ex+ax2 导数f′(x)=ex+2ax,
令f′(x)=0,即ex=-2ax,
设g(x)=ex,h(x)=-2ax,
g′(x)=ex,设切点为(m,em),
可得切线的斜率为em,
切线的方程为y-em=em(x-m),
易求过点(0,0)的曲线g(x)的切线斜率为e,切点为(1,e),
方程为y=ex,
因此,由题意可得,0≤-2a≤e,
故$-\frac{e}{2}≤a≤0$.
故答案为:$[-\frac{e}{2},0]$.
点评 本题考查导数的运用:求极值,注意运用转化思想和导数的几何意义,考查化简整理的运算能力,属于中档题.
练习册系列答案
相关题目
10.已知集合A={1,2,3,4,5},B=(2,4,6),P=A∩B,则集合P的子集有( )
| A. | 2个 | B. | 4个 | C. | 6个 | D. | 8个 |
19.某班4名学生的数学和物理成绩如表:
(1)求物理成绩y对数学成绩x的线性回归方程;
(2)一名学生的数学成绩是90分,试预测他的物理成绩.
附:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$ $\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| 学生 学科 | A | B | C | D |
| 数学成绩(x) | 86 | 73 | 69 | 63 |
| 物理成绩(y) | 76 | 71 | 64 | 59 |
(2)一名学生的数学成绩是90分,试预测他的物理成绩.
附:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$ $\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
6.有一回归方程为$\hat y$=2-5x,当x增加一个单位时( )
| A. | y平均增加2个单位 | B. | y平均增加5个单位 | ||
| C. | y平均减少2个单位 | D. | y平均减少5个单位 |
3.刘老师是一位经验丰富的高三理科班班主任,经长期研究,他发现高中理科班的学生的数学成绩(总分150分)与理综成绩(物理、化学与生物的综合,总分300分)具有较强的线性相关性,以下是刘老师随机选取的八名学生在高考中的数学得分x与理综得分y(如表):
参考数据及公式:$\widehaty=a+bx,b=\frac{{{x_1}{y_1}+{x_2}{y_2}+…+{x_n}{y_n}-n\overline x\overline y}}{{x_1^2+x_2^2+…+x_n^2-n{{\overline x}^2}}}≈1.83,\overline x=100,\overline y=200$.
(1)求出y关于x的线性回归方程;
(2)若小汪高考数学110分,请你预测他理综得分约为多少分?(精确到整数位);
(3)小金同学的文科一般,语文与英语一起能稳定在215分左右.如果他的目标是在高考总分冲击600分,请你帮他估算他的数学与理综大约分别至少需要拿到多少分?(精确到整数位).
| 学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 数学分数x | 52 | 64 | 87 | 96 | 105 | 123 | 132 | 141 |
| 理综分数y | 112 | 132 | 177 | 190 | 218 | 239 | 257 | 275 |
(1)求出y关于x的线性回归方程;
(2)若小汪高考数学110分,请你预测他理综得分约为多少分?(精确到整数位);
(3)小金同学的文科一般,语文与英语一起能稳定在215分左右.如果他的目标是在高考总分冲击600分,请你帮他估算他的数学与理综大约分别至少需要拿到多少分?(精确到整数位).