题目内容
16.一环保人士记录去年某地某月10天的AQI的茎叶图如图.
(Ⅰ)利用该样本估计该地本月空气质量优良(AQI≤100)的天数;(按这个月总共30天)
(Ⅱ)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为ξ,求ξ的概率分布列和数学期望.
分析 (1)从茎叶图中可以发现这样本中空气质量优的天数为2,空气质量良的天数为4,由此能求出该样本中空气质量优良的频率,从而能估计该月空气质量优良的天数.
(2)估计某天空气质量优良的概率为$\frac{3}{5}$,ξ的所有可能取值为0,1,2,3,且ξ~B(3,$\frac{3}{5}$),由此能求出ξ的概率分布列和数学期望.
解答 解:(1)从茎叶图中可以发现这样本中空气质量优的天数为2,
空气质量良的天数为4,
∴该样本中空气质量优良的频率为$\frac{6}{10}=\frac{3}{5}$,
从而估计该月空气质量优良的天数为30×$\frac{3}{5}$=18.
(2)由(1)估计某天空气质量优良的概率为$\frac{3}{5}$,ξ的所有可能取值为0,1,2,3,
且ξ~B(3,$\frac{3}{5}$),
P(ξ=0)=($\frac{2}{5}$)3=$\frac{8}{125}$,
P(ξ=1)=${C}_{3}^{1}(\frac{3}{5})(\frac{2}{5})^{2}$=$\frac{36}{125}$,
P(ξ=2)=${C}_{3}^{2}(\frac{3}{5})^{2}(\frac{2}{5})$=$\frac{54}{125}$,
P(ξ=3)=($\frac{3}{5}$)3=$\frac{27}{125}$,
∴ξ的分布列为:
| ξ | 0 | 1 | 2 | 3 |
| P | $\frac{8}{125}$ | $\frac{36}{125}$ | $\frac{54}{125}$ | $\frac{27}{125}$ |
点评 本题考查茎叶图的应用,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.
练习册系列答案
相关题目
4.若直线l1:ax+2y+6=0与直线${l_2}:x+(a-1)y+{a^2}-1=0$平行,则a=( )
| A. | .2或-1 | B. | .2 | C. | -1 | D. | 以上都不对 |
5.某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包,称其质量,分别记下抽查记录如表(单位:千克):
(1)这种抽样方法是哪一种抽样方法?
(2)画出茎叶图,并说明哪个车间的产品比较稳定.
| 甲 | 52 | 5149 | 48 | 53 | 48 | 49 |
| 乙 | 60 | 6540 | 35 | 25 | 65 | 60 |
(2)画出茎叶图,并说明哪个车间的产品比较稳定.