题目内容

1.设函数f′(x)是函数f(x)(x≠0)的导函数f′(x)<$\frac{2f(x)}{x}$,函数y=f(x)(x≠0)的零点为1和-2,则不等式xf(x)<0的解集为(  )
A.(-∞,-2)∪(0,1)B.(-∞,-2)∪(1,+∞)C.(-2,0)∪(0,1)D.(-2,0)∪(1,+∞)

分析 构造函数g(x)=$\frac{f(x)}{{x}^{2}}$,求出g(x)在定义域的单调性,将不等式x f(x)<0转化为x3g(x)<0,再分别利用函数的单调性进行求解,可以得出相应的解集.

解答 解:由f′(x)<$\frac{2f(x)}{x}$,得:$\left\{\begin{array}{l}{x>0}\\{xf′(x)-2f(x)<0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{xf′(x)-2f(x)>0}\end{array}\right.$,
令g(x)=$\frac{f(x)}{{x}^{2}}$,则xf(x)=x3g(x)<0,
则g′(x)=$\frac{f′(x{)x}^{2}-2xf(x)}{{x}^{4}}$=$\frac{xf′(x)-2f(x)}{{x}^{3}}$,
故g(x)在(-∞,0)递减,在(0,+∞)递减,
而g(-2)=0,g(1)=0,
则x∈(-∞,2)时:g(x)>0,x∈(-2,0)时:g(x)<0,
x∈(0,1)时:g(x)>0,x∈(1,+∞)时:g(x)<0,
由xf(x)<0得:x3g(x)<0,
∴$\left\{\begin{array}{l}{x>0}\\{g(x)<0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{g(x)>0}\end{array}\right.$,
∴xf(x)<0的解集是(-∞,-2)∪(1,+∞),
故选:B

点评 本题主要考查了函数的奇偶性的性质,以及函数单调性的应用等有关知识,属于中档题.结合函数的草图,会对此题有更深刻的理解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网