题目内容
具有性质:f(
)=-f(x)的函数,我们称为满足“倒负”变换的函数数,下列函数①y=x-
②y=x+
③y=
中满足“倒负”变换的函数是( )
| 1 |
| x |
| 1 |
| x |
| 1 |
| x |
|
分析:利用“倒负”函数定义,分别比较三个函数的f(
)与-f(x)的解析式,若符合定义,则为满足“倒负”变换的函数,若不符合,则举反例说明函数不符合定义,从而不是满足“倒负”变换的函数
| 1 |
| x |
解答:解:①设f(x)=x-
,∴f(
)=
-
=
-x=-f(x),∴y=x-
是满足“倒负”变换的函数
②设f(x)=x+
,∵f(
)=
,-f(2)=-
,即f(
)≠-f(2),∴y=x+
是不满足“倒负”变换的函数
③设f(x)=
则-f(x)=
∵0<x<1时,
>1,此时f(
)=-
=-x;
x=1时,
=1,此时f(
)=0
x>1时,0<
<1,此时f(
)=
∴f(
)=
=-f(x),
∴y=
是满足“倒负”变换的函数
故选 B
| 1 |
| x |
| 1 |
| x |
| 1 |
| x |
| 1 | ||
|
| 1 |
| x |
| 1 |
| x |
②设f(x)=x+
| 1 |
| x |
| 1 |
| 2 |
| 5 |
| 2 |
| 5 |
| 2 |
| 1 |
| 2 |
| 1 |
| x |
③设f(x)=
|
|
∵0<x<1时,
| 1 |
| x |
| 1 |
| x |
| 1 | ||
|
x=1时,
| 1 |
| x |
| 1 |
| x |
x>1时,0<
| 1 |
| x |
| 1 |
| x |
| 1 |
| x |
∴f(
| 1 |
| x |
|
∴y=
|
故选 B
点评:本题考查了对新定义函数的理解,复合函数解析式的求法,分段函数解析式的求法
练习册系列答案
相关题目