题目内容

10.在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若∠B=∠C,且$7{a^2}+{b^2}+{c^2}=4\sqrt{3}$,求△ABC的面积的最大值.

分析 利用余弦定理可得cosC,再利用三角形面积计算公式、基本不等式的性质即可得出.

解答 解:由∠B=∠C,得b=c,代入$7{a^2}+{b^2}+{c^2}=4\sqrt{3}$,
得$7{a^2}+2{b^2}=4\sqrt{3}$,即$2{b^2}=4\sqrt{3}-7{a^2}$,
由余弦定理得,$cosC=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}=\frac{a}{2b}$,
∴$sinC=\sqrt{1-{{cos}^2}C}=\frac{{\sqrt{4{b^2}-{a^2}}}}{2b}=\frac{{\sqrt{8\sqrt{3}-15{a^2}}}}{2b}$,
则△ABC的面积$S=\frac{1}{2}absinC=\frac{1}{2}ab×\frac{{\sqrt{8\sqrt{3}-15{a^2}}}}{2b}=\frac{1}{4}a\sqrt{8\sqrt{3}-15{a^2}}=\frac{1}{4}\sqrt{{a^2}(8\sqrt{3}-15{a^2})}=\frac{1}{4}×\frac{{\sqrt{15}}}{15}\sqrt{15{a^2}(8\sqrt{3}-15{a^2})}$$≤\frac{1}{4}×\frac{{\sqrt{15}}}{15}×\frac{{15{a^2}+8\sqrt{3}-15{a^2}}}{2}=\frac{1}{4}×\frac{{\sqrt{15}}}{15}×4\sqrt{3}=\frac{{\sqrt{5}}}{5}$,
当且仅当$15{a^2}=8\sqrt{3}-15{a^2}$时取等号,此时${a^2}=\frac{{4\sqrt{3}}}{15}$,
∴△ABC的面积的最大值是$\frac{{\sqrt{5}}}{5}$.

点评 本题考查了余弦定理、三角形面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网