题目内容
5.四面体ABCD中,AB=2,BC=3,CD=4,DB=5,AC=$\sqrt{13}$,AD=$\sqrt{29}$,则四面体ABCD外接球的表面积是29π.分析 由题意,DC⊥AC,DC⊥BC,AB⊥BC,将四面体扩充为长方体,体对角线长为$\sqrt{16+13}$=$\sqrt{29}$,即可求出四面体ABCD外接球的表面积.
解答 解:由题意,DC⊥AC,DC⊥BC,AB⊥BC,
将四面体扩充为长方体,体对角线长为$\sqrt{16+13}$=$\sqrt{29}$,
∴四面体ABCD外接球的表面积是$4π•(\frac{\sqrt{29}}{2})^{2}$=29π.
故答案为29π.
点评 本题考查四面体ABCD外接球的表面积,将四面体扩充为长方体,求出体对角线长是关键.
练习册系列答案
相关题目
15.2016年1月1日起全国统一实施全面两孩政策,为了解适龄民众对放开生育二胎政策的态度,某市选取70后和80后作为调查对象,随机调查了100位,得到数据如表:
根据以上调查数据,认为“生二胎与年龄有关”的把握有( )
参考公式:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1}•{n}_{2}•n•1•n•2}$,其中n=n11+n12+n21+n22.
参考数据:
| 生二胎 | 不生二胎 | 合计 | |
| 70后 | 30 | 15 | 45 |
| 80后 | 45 | 10 | 55 |
| 合计 | 75 | 25 | 100 |
参考公式:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1}•{n}_{2}•n•1•n•2}$,其中n=n11+n12+n21+n22.
参考数据:
| P(x2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
| A. | 90% | B. | 95% | C. | 99% | D. | 99.9% |
20.在两坐标轴上截距均为m(m∈R)的直线l1与直线l2:2x+2y-3=0的距离为$\sqrt{2}$,则m=( )
| A. | $\frac{7}{2}$ | B. | 7 | C. | -1或7 | D. | -$\frac{1}{2}$或$\frac{7}{2}$ |