ÌâÄ¿ÄÚÈÝ
9£®ÒÑÖªÁ½¸öÎÞÇîÊýÁÐ{an}£¬{bn}·Ö±ðÂú×ã$\left\{\begin{array}{l}{{a}_{1}=1}\\{|{a}_{n+1}-{a}_{n}|=2}\end{array}\right.$£¬$\left\{\begin{array}{l}{{b}_{1}=-1}\\{|\frac{{b}_{n+1}}{{b}_{n}}|=2}\end{array}\right.$£¬ÆäÖÐn¡ÊN*£¬ÉèÊýÁÐ{an}£¬{bn}µÄǰnÏîºÍ·Ö±ðΪSn¡¢Tn£®£¨1£©ÈôÊýÁÐ{an}£¬{bn}¶¼ÎªµÝÔöÊýÁУ¬ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£®
£¨2£©ÈôÊýÁÐ{cn}Âú×㣺´æÔÚΨһµÄÕýÕûÊýk£¨k¡Ý2£©£¬Ê¹µÃck£¼ck-1£¬³ÆÊýÁÐ{cn}Ϊ¡°k×¹µãÊýÁС±£®
¢ÙÈôÊýÁÐ{an}Ϊ¡°5×¹µãÊýÁС±£¬ÇóSn£®
¢ÚÈôÊýÁÐ{an}Ϊ¡°p×¹µãÊýÁС±£¬ÊýÁÐ{bn}Ϊ¡°q×¹µãÊýÁС±£¬ÊÇ·ñ´æÔÚÕýÕûÊým£¬Ê¹µÃSm+1=Tm£¬Èô´æÔÚ£¬ÇómµÄ×î´óÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©ÓÉÁ½ÊýÁÐΪµÝÔöÊýÁУ¬½áºÏµÝÍÆÊ½¿ÉµÃan+1-an=2£¬b2=-2b1£¬bn+2=2bn+1£¬n¡ÊN*£¬Óɴ˿ɵÃÊýÁÐ{an}ΪµÈ²îÊýÁУ¬ÊýÁÐ{bn}´ÓµÚ¶þÏîÆð¹¹³ÉµÈ±ÈÊýÁУ¬È»ºóÀûÓõȲîÊýÁк͵ȱÈÊýÁеÄͨÏʽÇóµÃ´ð°¸£»
£¨2£©¢Ù¸ù¾ÝÌâÄ¿Ìõ¼þÅжϣºÊýÁÐ{an}±ØÎª1£¬3£¬5£¬7£¬5£¬7£¬9£¬11£¬¡£¬¼´Ç°4ÏîΪÊ×ÏîΪ1£¬¹«²îΪ2µÄµÈ²îÊýÁУ¬´ÓµÚ5ÏʼΪÊ×Ïî5£¬¹«²îΪ2µÄµÈ²îÊýÁУ¬Çó½âSn¼´¿É£®
¢ÚÔËÓÃÊýÁÐ{bn}Ϊ¡°×¹µãÊýÁС±ÇÒb1=-1£¬×ÛºÏÅжÏÊýÁÐ{bn}ÖÐÓÐÇÒÖ»ÓÐÁ½¸ö¸ºÏ¼ÙÉè´æÔÚÕýÕûÊým£¬Ê¹µÃSm+1=Tm£¬ÏÔÈ»m¡Ù1£¬ÇÒTmÎªÆæÊý£¬¶ø{an}Öи÷Ïî¾ùÎªÆæÊý£¬¿ÉµÃm±ØÎªÅ¼Êý£® ÔÙÔËÓò»µÈʽ֤Ã÷m¡Ü6£¬Çó³öÊýÁм´¿É£®
½â´ð ½â£º£¨1£©¡ßÊýÁÐ{an}£¬{bn}¶¼ÎªµÝÔöÊýÁУ¬
¡àÓɵÝÍÆÊ½¿ÉµÃan+1-an=2£¬b2=-2b1£¬bn+2=2bn+1£¬n¡ÊN*£¬
ÔòÊýÁÐ{an}ΪµÈ²îÊýÁУ¬ÊýÁÐ{bn}´ÓµÚ¶þÏîÆð¹¹³ÉµÈ±ÈÊýÁУ®
¡àan=2n-1£¬${b}_{n}=\left\{\begin{array}{l}{-1£¬n=1}\\{{2}^{n-1}£¬n¡Ý2}\end{array}\right.$£»
£¨2£©¢Ù¡ßÊýÁÐ{an}Âú×㣺´æÔÚΨһµÄÕýÕûÊýk=5£¬Ê¹µÃak£¼ak-1£¬ÇÒ|an+1-an|=2£¬
¡àÊýÁÐ{an}±ØÎª1£¬3£¬5£¬7£¬5£¬7£¬9£¬11£¬¡£¬¼´Ç°4ÏîΪÊ×ÏîΪ1£¬¹«²îΪ2µÄµÈ²îÊýÁУ¬´ÓµÚ5ÏʼΪÊ×Ïî5£¬¹«²îΪ2µÄµÈ²îÊýÁУ¬
¹Ê${S}_{n}=\left\{\begin{array}{l}{{n}^{2}£¬n¡Ü4}\\{{n}^{2}-4n+16£¬n¡Ý5}\end{array}\right.$£»
¢Ú¡ß$|\frac{{b}_{n+1}}{{b}_{n}}|=2$£¬¼´bn+1=¡À2bn£¬
¡à|bn|=2n-1£¬
¶øÊýÁÐ{bn}Ϊ¡°×¹µãÊýÁС±ÇÒb1=-1£¬
¡àÊýÁÐ{bn}ÖÐÓÐÇÒÖ»ÓÐÁ½¸ö¸ºÏ
¼ÙÉè´æÔÚÕýÕûÊým£¬Ê¹µÃSm+1=Tm£¬ÏÔÈ»m¡Ù1£¬ÇÒTmÎªÆæÊý£¬¶ø{an}Öи÷Ïî¾ùÎªÆæÊý£¬
¡àm±ØÎªÅ¼Êý£®
Ê×ÏÈÖ¤Ã÷£ºm¡Ü6£®
Èôm£¾7£¬ÊýÁÐ{an}ÖУ¨Sm+1£©max=1+3+¡+£¨2m+1£©=£¨m+1£©2£¬
¶øÊýÁÐ{bn}ÖУ¬bm±ØÈ»ÎªÕý£¬·ñÔò${T}_{m}=-1+{b}_{2}+¡+£¨-{2}^{m-1}£©$¡Ü-1+21+¡+2m-2+£¨-2m-1£©=-3£¼0£¬ÏÔȻì¶Ü£»
¡à$£¨{T}_{m}£©_{min}=-1+{2}^{1}+¡+{2}^{m-3}+£¨-{2}^{m-2}£©+{2}^{m-1}$=2m-1-3£®
Éè${c}_{m}={2}^{m-1}-£¨m+1£©^{2}-3$£¬
Éè${d}_{m}={c}_{m+1}-{c}_{m}={2}^{m-1}-2m-3$£¬
¶ø${d}_{m+1}-{d}_{m}={2}^{m-1}-2£¾$0£¨m£¾7£©£¬
¡à{dm}£¨m£¾7£©ÎªÔöÊýÁУ¬ÇÒd7£¾0£¬Ôò{cm}£¨m£¾7£©ÎªÔöÊýÁУ¬¶øc8£¾0£¬
¡à£¨Tm£©min£¾£¨Sm£©max£¬
¼´m¡Ü6£®
µ±m=6ʱ£¬¹¹Ô죺{an}Ϊ1£¬3£¬1£¬3£¬5£¬7£¬9£¬¡£¬{bn}Ϊ-1£¬2£¬4£¬8£¬-16£¬32£¬64£¬¡
´Ëʱp=2£¬q=4£®
¡àmmax=6£¬¶ÔÓ¦µÄp=2£¬q=4£®
µãÆÀ ±¾ÌâÊÇж¨ÒåÌ⣬¿¼²éÁËÊýÁеÝÍÆÊ½£¬×ۺϿ¼²éѧÉúÔËÓÃж¨ÒåÇó½âÊýÁеÄÎÊÌ⣬¿¼²éÁË·ÖÎöÎÊÌâºÍ½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| A£® | tan735¡ã£¾tan800¡ã | B£® | tan1£¾-tan2 | C£® | tan$\frac{5¦Ð}{7}$£¼tan$\frac{4¦Ð}{7}$ | D£® | tan$\frac{9¦Ð}{8}$£¼tan$\frac{¦Ð}{7}$ |
| A£® | 45¡ã | B£® | -50¡ã | C£® | -40¡ã | D£® | 920¡ã |
| A£® | 0⊆A | B£® | {0}¡ÊA | C£® | ∅¡ÊA | D£® | {0}⊆A |