题目内容
6.定积分${∫}_{0}^{π}$|sinx-cosx|dx的值是2$\sqrt{2}$.分析 由题意可得${∫}_{0}^{π}$|sinx-cosx|dx=${∫}_{0}^{\frac{π}{4}}$(cosx-sinx)dx+${∫}_{\frac{π}{4}}^{π}$(sinx-cosx)dx,再根据定积分的计算法则计算即可.
解答 解:${∫}_{0}^{π}$|sinx-cosx|dx=${∫}_{0}^{\frac{π}{4}}$(cosx-sinx)dx+${∫}_{\frac{π}{4}}^{π}$(sinx-cosx)dx,
=(sinx+cosx)|${\;}_{0}^{\frac{π}{4}}$+(-cosx-sinx)|${\;}_{\frac{π}{4}}^{π}$,
=[(sin$\frac{π}{4}$+cos$\frac{π}{4}$)-(sin0+cos0)]-[(sinπ+cosπ-(sin$\frac{π}{4}$+cos$\frac{π}{4}$)],
=($\sqrt{2}$-1)-(-1-$\sqrt{2}$),
=2$\sqrt{2}$,
故答案为:2$\sqrt{2}$.
点评 本题考查了定积分的计算,关键是化为分段函数,属于基础题.
练习册系列答案
相关题目
18.
如图所示,三棱锥P-ABC的底面在平面α上,且AC⊥PC,平面PAC⊥平面PBC,点P,A,B是定点,则动点C运动形成的图形是( )
| A. | 一条线段 | B. | 一条直线 | ||
| C. | 一个圆 | D. | 一个圆,但要去掉两个点 |
15.
如图,双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的右顶点为A,左右焦点分别为F1,F2,点p是双曲线右支上一点,PF1交左支于点Q,交渐近线y=$\frac{b}{a}$x于点R,M是PQ的中点,若RF2⊥PF1,且AM⊥PF1,则双曲线的离心率是( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
14.已知复数z=1+$\sqrt{3}$i,则$\frac{z^2}{z-2}$=( )
| A. | 2 | B. | -2 | C. | 2i | D. | -2i |