题目内容
【题目】已知定义在
上的函数
,
为其导数,且
恒成立,则( )
A.
B. ![]()
C.
D. ![]()
【答案】A
【解析】
通过
,可以联想到导数运算的除法,这样可以构造新函数
,
,这样就可以判断出函数
在
上的单调性,把四个选项变形,利用单调性判断出是否正确.
通过
,这个结构形式,可以构造新函数
,
,而
,所以当
时,
,所以函数
在
上是单调递增函数,现对四个选项逐一判断:
选项A.
,可以判断
是否正确,
也就是判断
是否正确,即判断
是否成立,因为
,
在
上是单调递增函数,所以有
,故选项A正确;
选项B.
,也就是判断
是否正确,即判断
是否成立,即判断
是否成立,因为
,
在
上是单调递增函数,所以有
,故选项B不正确;
选项C.
,也就是判断
是否正确,即判断
是否成立,即判断
是否成立,因为
,
在
上是单调递增函数,所以有
,故选项C不正确;
选项D.
,也就是判断
,是否成立,即判断
是否成立,因为
,
在
上是单调递增函数,所以有
,因此选项D不正确,故本题选A.
练习册系列答案
相关题目
【题目】某地植被面积
(公顷)与当地气温下降的度数
(
)之间有如下的对应数据:
| 20 | 40 | 50 | 60 | 80 |
| 3 | 4 | 4 | 4 | 5 |
(1)请用最小二乘法求出
关于
的线性回归方程
;
(2)根据(1)中所求线性回归方程,如果植被面积为200公顷,那么下降的气温大约是多少
?
参考公式:用最小二乘法求线性回归方程系数公式:
,
.