题目内容
已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+ln x,则f′(e)=( )
A.1 B.-1 C.-e-1 D.-e
C
如图1是某公共汽车线路收支差额y元与乘客量x的图象.
(1)试说明图1上点A、点B以及射线AB上的点的实际意义;
(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?
(3)此问题中直线斜率的实际意义是什么?
(4)图1、图2、图3中的票价分别是多少元?
已知二次函数f(x)=ax2+bx+c为偶函数,且f(-1)=-1.
(1)求函数f(x)的解析式;
(2)若函数g(x)=f(x)+(2-k)x在区间[-2,2]上单调递减,求实数k的取值范围.
已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是( )
A.(-1,2) B.(-∞,-3)∪(6,+∞)
C.(-3,6) D.(-∞,-1)∪(2,+∞)
f(x)=x(x-c)2在x=2处有极大值,则常数c的值为________.
点P0(x0,y0)是曲线y=3ln x+x+k(k∈R)图象上一个定点,过点P0的切线方程为4x-y-1=0,则实数k的值为( )
A.2 B.-2 C.-1 D.-4
y=sin22x;
已知f(x)为二次函数,且f(-1)=2,f ′(0)=0,
f(x)dx=-2.
(1)求f(x)的解析式;
(2)求f(x)在[-1,1]上的最大值与最小值.
若函数f(x)=ex-a-恰有一个零点,则实数a的取值范围是________.