题目内容
16.二项式(${\root{3}{x}$-$\frac{1}{{2\root{3}{x}}}$)n的展开式中各项系数之和为$\frac{1}{64}$,则展开式中的常数项为-$\frac{5}{2}$.分析 先x=1,求出n的值,再利用二项式展开式的通项公式求出常数项.
解答 解:令x=1,根据题意有${({1-\frac{1}{2}})^n}=\frac{1}{64}$,
解得n=6;
(${\root{3}{x}$-$\frac{1}{{2\root{3}{x}}}$)6展开式的通项公式为:
${T_{r+1}}=C_6^r{({\root{3}{x}})^{6-r}}{({-\frac{1}{{2\root{3}{x}}}})^r}={({-\frac{1}{2}})^r}C_6^r{x^{\frac{6-2r}{3}}}$,
令$\frac{6-2r}{3}=0$,解得r=3;
所以,展开式的常数项为:
${T_4}={({-\frac{1}{2}})^3}C_6^3=-\frac{5}{2}$.
故答案为:-$\frac{5}{2}$.
点评 本题考查了用赋值法求二项式次数的应用问题,也考查了二项式展开式的通项公式的应用问题,是基础题目.
练习册系列答案
相关题目
6.已知抛物线y2=4x的焦点到双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一条渐近线的距离为$\frac{1}{2}$,则该双曲线的离心率为( )
| A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\sqrt{2}$ | C. | $\frac{{2\sqrt{3}}}{3}$ | D. | $\sqrt{5}+1$ |
4.已知m,n∈R,则“mn>0”是“一次函数y=$\frac{m}{n}x$+$\frac{1}{n}$的图象不经过第二象限”的( )
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
11.若a=($\frac{1}{2}$)${\;}^{\frac{1}{3}}$,b=$lo{g_{\frac{1}{3}}}$2,c=lo${g_{\frac{1}{2}}}$3,则a,b,c三者的大小关系是( )
| A. | b>c>a | B. | c>a>b | C. | a>b>c | D. | a>c>b |
1.记样本x1,x2,…,xm的平均数为$\overline{x}$,样本y1,y2,…,yn的平均数为$\overline{y}$($\overline{x}$≠$\overline{y}$),若样本x1,x2,…,xm,y1,y2,…,yn的平均数为$\overline{z}$=$\frac{1}{4}$$\overline{x}$+$\frac{3}{4}$$\overline{y}$,则$\frac{m}{n}$的值为( )
| A. | 3 | B. | 4 | C. | $\frac{1}{4}$ | D. | $\frac{1}{3}$ |
8.设函数f(x)=asinx+x2,若f(1)=2,则f(-1)=( )
| A. | 2 | B. | -2 | C. | 1 | D. | 0 |
5.已知等差数列{an}的公差不为0,a1=1,且$\frac{1}{a_1},\;\frac{1}{a_2},\;\frac{1}{a_4}$成等比数列,设{an}的前n项和为Sn,则Sn=( )
| A. | $\frac{{{{(n+1)}^2}}}{4}$ | B. | $\frac{n(n+3)}{4}$ | C. | $\frac{n(n+1)}{2}$ | D. | $\frac{{{n^2}+1}}{2}$ |
6.设集合A={x|x2-2x≥0},B={x|-1<x<2},则A∩B=( )
| A. | {x|0≤x≤2} | B. | {x|0<x<2} | C. | {x|-1≤x<0} | D. | {x|-1<x≤0} |