题目内容
△ABC中,已知| 3 |
| 3 |
(1)求∠C的大小;
(2)若c=2,且△ABC是锐角三角形,求a2+b2的取值范围.
分析:(1)由已知中
tanAtanB-tanA-tanB=
,变形可得
=-
,由两角和的正切公式,我们易得到A+B的值,进而求出∠C的大小;
(2)由c=2,且△ABC是锐角三角形,再由正弦定理,我们可以将a2+b2转化为一个只含A的三角函数式,根据正弦型函数的性质,我们易求出a2+b2的取值范围.
| 3 |
| 3 |
| tanA+tanB |
| 1-tanAtanB |
| 3 |
(2)由c=2,且△ABC是锐角三角形,再由正弦定理,我们可以将a2+b2转化为一个只含A的三角函数式,根据正弦型函数的性质,我们易求出a2+b2的取值范围.
解答:解:(1)依题意:
=-
,即tan(A+B)=-
,
又0<A+B<π,
∴A+B=
,∴C=π-A-B=
,
(2)由三角形是锐角三角形可得
,
即
<A<
由正弦定理得
=
=
∴a=
×sinA=
sinA,b=
sinB=
sin(
-A)
,a2+b2=
[sin2A+sin2(
-A)]=f(A),
a2+b2=
[sin2A+sin2B]=
[
(1-cos2A)+
(1-cos2B)]
=
-
(cos2A+cos2B)=
-
[cos2A+cos(
-2A)]
=
-
[cos2A+(-
)cos2A+(-
)sin2A]
=
-
[
cos2A-
sin2A]
=
+
sin(2A-
),
∵
<A<
,∴
<2A-
<
,
∴
<sin(2A-
)≤1,即
<a2+b2≤8
| tanA+tanB |
| 1-tanAtanB |
| 3 |
| 3 |
又0<A+B<π,
∴A+B=
| 2π |
| 3 |
| π |
| 3 |
(2)由三角形是锐角三角形可得
|
即
| π |
| 6 |
| π |
| 2 |
| a |
| sinA |
| b |
| sinB |
| c |
| sinC |
∴a=
| c |
| sinC |
| 4 | ||
|
| 4 | ||
|
| 4 | ||
|
| 2π |
| 3 |
,a2+b2=
| 16 |
| 3 |
| 2π |
| 3 |
a2+b2=
| 16 |
| 3 |
| 16 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 16 |
| 3 |
| 8 |
| 3 |
| 16 |
| 3 |
| 8 |
| 3 |
| 4π |
| 3 |
=
| 16 |
| 3 |
| 8 |
| 3 |
| 1 |
| 2 |
| ||
| 2 |
=
| 16 |
| 3 |
| 8 |
| 3 |
| 1 |
| 2 |
| ||
| 2 |
=
| 16 |
| 3 |
| 8 |
| 3 |
| π |
| 6 |
∵
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
∴
| 1 |
| 2 |
| π |
| 6 |
| 20 |
| 3 |
点评:本题考查的知识点是解三角形及两角和与差的正切函数,熟练掌握两角和(差)的正弦、余弦、正切函数式及其变形,是解答本题的关键.
练习册系列答案
相关题目
在△ABC中,已知a2=b2+c2+bc,则角A为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|