题目内容
20.分析 取BC中点E,连结ME、NE,由已知推导出平面PAB∥平面MNE,由此能证明MN∥平面PAB.
解答
证明:取BC中点E,连结ME、NE,
∵四棱锥的底面ABCD是平行四边形,M是AD中点,N是PC中点,
∴ME∥AB,NE∥PB,
∵AB∩PB=B,ME∩NE=E,
∴平面PAB∥平面MNE,
∵MN?平面MNE,
∴MN∥平面PAB.
点评 本题考查线面平行的证明,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.
练习册系列答案
相关题目
10.化简$\frac{sin(2A+B)}{sinA}$-2cos(A+B)的结果为( )
| A. | sin(A+B) | B. | cos(2A+B) | C. | $\frac{sinB}{sinA}$ | D. | tanA |
11.已知cos(θ-$\frac{2π}{5}$)=$\frac{2}{3}$,则2sin($\frac{19π}{10}$-θ)+cos(θ+$\frac{13π}{5}$)等于( )
| A. | $\frac{2}{3}$ | B. | -$\frac{2}{3}$ | C. | 2 | D. | -2 |
15.
如图所示,在三棱柱ABC-A1B1C1中,E∈BC,F∈B1C1,EF∥C1C,点M∈侧面AA1B1B,设点M,E,F确定平面γ.试作出平面γ与三棱柱ABC-A1B1C1表面的交线,并说明理由.
12.过点M(-1,$\frac{1}{2}$)的直线l与椭圆x2+2y2=2交于A,B两点,设线段AB的中点为M,设直线l的斜率为k1(k1≠0),直线OM的斜率为k2,则k1k2的值为( )
| A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |