题目内容

若△ABC的内角A、B、C满足sinA:sinB:sinC=2:3:3,则cosB(  )
分析:利用正弦定理化简已知的比例式,得到三边之比,设每一份为k,表示出三边,利用余弦定理表示出cosB,将三边长代入,化简即可求出cosB的值.
解答:解:由正弦定理化简已知的比例式得:a:b:c=2:3:3,
设a=2k,b=3k,c=3k,
则cosB=
a2+c2-b2
2ac
=
4k2
12k2
=
1
3

故选B
点评:此题考查了正弦、余弦定理,熟练掌握正弦、余弦定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网