题目内容

10.已知数列{an}的前n项和为Sn,且Sn=n2-4n+4,(n∈N*).
(1)求数列{an}的通项公式;
(2)数列{bn}中,令bn=$\left\{\begin{array}{l}{1,n=1}\\{\frac{{a}_{n}+5}{2},n≥2}\end{array}\right.$,Tn=$\frac{1}{{{b}_{1}}^{2}}+\frac{1}{{{b}_{2}}^{2}}+\frac{1}{{{b}_{3}}^{2}}+…\frac{1}{{{b}_{n}}^{2}}$,求证:Tn<2.

分析 (1)由${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$,能求出数列{an}的通项公式.
(2)由bn=n,$\frac{1}{{k}^{2}}<\frac{1}{k(k-1)}=\frac{1}{k-1}-\frac{1}{k}$,利用放缩法和裂项求和法能证明Tn<2.

解答 解:(1)∵${S}_{n}={n}^{2}-4n+4$,∴a1=S1=1-4+4=1,
当n≥2时,an=Sn-Sn-1=2n-5,
n=1时,2n-5=-3≠a1
∴an=$\left\{\begin{array}{l}{1,n=1}\\{2n-5,n≥2}\end{array}\right.$.
(2)∵bn=$\left\{\begin{array}{l}{1,n=1}\\{\frac{{a}_{n}+5}{2},n≥2}\end{array}\right.$,an=$\left\{\begin{array}{l}{1,n=1}\\{2n-5,n≥2}\end{array}\right.$.∴bn=n,
∵$\frac{1}{{k}^{2}}<\frac{1}{k(k-1)}=\frac{1}{k-1}-\frac{1}{k}$,k=2,3,4,…,n
∴Tn=$\frac{1}{{{b}_{1}}^{2}}+\frac{1}{{{b}_{2}}^{2}}+\frac{1}{{{b}_{3}}^{2}}+…\frac{1}{{{b}_{n}}^{2}}$
=$\frac{1}{{1}^{2}}+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+…+\frac{1}{{n}^{2}}$
<$1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n-1}-\frac{1}{n}$
=2-$\frac{1}{n}$,
∴Tn<2.

点评 本题考查数列的前n项和的求法,考查数列的前n项和小于2的证明,是中档题,解题时要认真审题,注意裂项求和法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网