题目内容
设数列{an}的前n项和为Sn,且a1=
,2Sn=SnSn-1+1(n≥2),求:
(1)S1,S2,S3;
(2)猜想数列{Sn}的通项公式,并用数学归纳法证明.
| 1 |
| 2 |
(1)S1,S2,S3;
(2)猜想数列{Sn}的通项公式,并用数学归纳法证明.
(1)∵S1=a1=
,2Sn=SnSn-1+1(n≥2),
∴2S2=S2S1+1=
S2+1,
∴S2=
;
∴2S3=S3S2+1=
S3+1,
∴S3=
;
(2)由S1=
,S2=
,S3=
,可猜想Sn=
;
证明:①当n=1时,S1=
,等式成立;
②假设n=k时,Sk=
,
则n=k+1时,∵2Sk+1=Sk+1•Sk+1=
•Sk+1+1,
∴(2-
)Sk+1=1,
∴Sk+1=
=
,
即n=k+1时,等式也成立;
综合①②知,对任意n∈N*,均有Sn=
.
| 1 |
| 2 |
∴2S2=S2S1+1=
| 1 |
| 2 |
∴S2=
| 2 |
| 3 |
∴2S3=S3S2+1=
| 2 |
| 3 |
∴S3=
| 3 |
| 4 |
(2)由S1=
| 1 |
| 2 |
| 2 |
| 3 |
| 3 |
| 4 |
| n |
| n+1 |
证明:①当n=1时,S1=
| 1 |
| 2 |
②假设n=k时,Sk=
| k |
| k+1 |
则n=k+1时,∵2Sk+1=Sk+1•Sk+1=
| k |
| k+1 |
∴(2-
| k |
| k+1 |
∴Sk+1=
| k+1 |
| k+2 |
| k+1 |
| (k+1)+1 |
即n=k+1时,等式也成立;
综合①②知,对任意n∈N*,均有Sn=
| n |
| n+1 |
练习册系列答案
相关题目