题目内容

7.设函数f(x)=|x-2|+|x-a|,x∈R.
(Ⅰ)求证:当a=-1时,不等式lnf(x)>1成立;
(Ⅱ)关于x的不等式f(x)≥a在R上恒成立,求实数a的最大值.

分析 (Ⅰ)通过讨论x的范围,得到f(x)的分段函数的形式,求出f(x)的最小值,从而证出结论即可;
(Ⅱ)求出f(x)的最小值,得到关于a的不等式,解出即可.

解答 解:(Ⅰ)证明:当a=-1时,
$f(x)=|x-2|+|x+1|=\left\{{\begin{array}{l}{-2x+1,x≤-1}\\{3,-1<x<2}\\{2x-1,x≥2}\end{array}}\right.$,
故f(x)的最小值为3,
则lnf(x)的最小值为ln3>lne=1,
所以lnf(x)>1成立.
(Ⅱ)由绝对值不等式可得:
f(x)=|x-2|+|x-a|≥|(x-2)-(x-a)|=|a-2|,
再由不等式f(x)≥a在R上恒成立,
可得|a-2|≥a,解得a≤1,
故a的最大值为1.

点评 本题考查了求分段函数的最值问题,考查绝对值的性质,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网