题目内容
7.复数z=$\frac{10-5{i}^{5}}{1+2{i}^{3}}$在复平面上对应的点在( )| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 直接利用复数的代数形式混合运算化简复数,求出对应点的坐标,即可.
解答 解:复数z=$\frac{10-5{i}^{5}}{1+2{i}^{3}}$=$\frac{10-5i}{1-2i}$=$\frac{(10-5i)(1+2i)}{(1-2i)(1+2i)}$=4+3i.
复数的对应点为:(4,3)在第一象限.
故选:A.
点评 本题考查复数的代数形式混合运算,复数的几何意义,考查计算能力.
练习册系列答案
相关题目
17.△ABC的三个内角A,B,C所对应的边分别为a,b,c,则asinAsinB+bcos2A=$\sqrt{2}$a是b=$\sqrt{2}$a的( )
| A. | 充分不必要条件 | B. | 充分必要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
12.设数列{an}的前n项和为S,若Sn+1,Sn+2,Sn+3成等差数列,且a2=-2,则a7=( )
| A. | 16 | B. | 32 | C. | 64 | D. | 128 |
19.某学校为了了解该校学生对于某项运动的爱好是否与性别有关,通过随机抽查110名学生,得到如下2×2的列联表:由公式K2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$,算得K2=$\frac{110×(40×30-20×20)^2}{60×50×60×50}$≈7.8.
附表(临界值表):
参照附表,以下结论正确是( )
附表(临界值表):
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
| 男 | 女 | 总计 | |
| 爱好 | 40 | 20 | 60 |
| 不爱好 | 20 | 30 | 50 |
| 总计 | 60 | 50 | 110 |
| A. | 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” | |
| B. | 只有不超过1%的把握认为“爱好该项运动与性别有关” | |
| C. | 有99%以上的把握认为“爱好该项运动与性别有关” | |
| D. | 有99%以上的把握认为“爱好该项运动与性别无关” |