ÌâÄ¿ÄÚÈÝ
18£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý$¦Á¡Ê[0£¬\frac{¦Ð}{2}$£©¡È£¨$\frac{¦Ð}{2}£¬¦Ð$£©£©£¬ÒÔÔµãΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}$sin£¨$¦È+\frac{¦Ð}{4}$£©£¨1£©ÇóÖ±ÏßlµÄÆÕͨ·½³ÌºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôÇúÏßCÓëÖ±Ïß½»ÓÚA£¬BÁ½µã£¬ÇÒ|AB|=$\sqrt{6}$£¬Çótan¦ÁµÄÖµ£®
·ÖÎö £¨1£©ÓÉÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¬ÏûÈ¥²ÎÊýtµÃy=£¨x+1£©tan¦Á£®ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}$sin£¨$¦È+\frac{¦Ð}{4}$£©£¬Õ¹¿ªµÃ¦Ñ2=2¦Ñcos¦È+2¦Ñsin¦È£¬ÀûÓÃ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$¼´¿É»¯ÎªÖ±½Ç×ø±ê·½³Ì£®
£¨2£©ÓÉÔ²CµÄÔ²ÐÄΪC£¨1£¬1£©£¬°ë¾¶r=$\sqrt{2}$£®ÀûÓõ㵽ֱÏߵľàÀ빫ʽºÍÏÒ³¤¹«Ê½¿ÉµÃ£ºÔ²Ðĵ½Ö±ÏßlµÄ¾àÀëd=$\frac{|2tan¦Á-1|}{\sqrt{1+ta{n}^{2}¦Á}}$=$\sqrt{2-£¨\frac{\sqrt{6}}{2}£©^{2}}$£¬»¯¼ò½â³ö¼´¿É£®
½â´ð ½â£º£¨1£©ÓÉÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¬ÏûÈ¥²ÎÊýtµÃy=£¨x+1£©tan¦Á£®
ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}$sin£¨$¦È+\frac{¦Ð}{4}$£©£¬Õ¹¿ªµÃ¦Ñ2=2¦Ñcos¦È+2¦Ñsin¦È£¬»¯ÎªÖ±½Ç×ø±ê·½³ÌµÃx2+y2-2x-2y=0£¬¼´£¨x-1£©2+£¨y-1£©2=2£®
£¨2£©¡ßÔ²CµÄÔ²ÐÄΪC£¨1£¬1£©£¬°ë¾¶r=$\sqrt{2}$£®
ÔòÔ²Ðĵ½Ö±ÏßlµÄ¾àÀëd=$\frac{|2tan¦Á-1|}{\sqrt{1+ta{n}^{2}¦Á}}$=$\sqrt{2-£¨\frac{\sqrt{6}}{2}£©^{2}}$=$\frac{\sqrt{2}}{2}$£¬
»¯¼òµÃ7tan2¦Á-8tan¦Á+1=0£¬½âÖ®µÃtan¦Á=1»òtan¦Á=$\frac{1}{7}$£®
µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢ÏÒ³¤¹«Ê½¡¢Ö±ÏßÓëÔ²µÄλÖùØÏµ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | 2 | B£® | 1 | C£® | $\frac{1}{2}$ | D£® | $\frac{1}{4}$ |
| A£® | $\sqrt{2}$+1 | B£® | 3$\sqrt{2}$-1 | C£® | $\sqrt{2}$-1 | D£® | 3$\sqrt{2}$-2 |
| A£® | £¨-¡Þ£¬2£© | B£® | £¨-¡Þ£¬2] | C£® | £¨-¡Þ£¬$\frac{5}{2}$£© | D£® | £¨-¡Þ£¬$\frac{5}{2}$] |
| A£® | {x|-1¡Üx£¼2} | B£® | {x|-2£¼x¡Ü4} | C£® | {x|-1¡Üx£¼4} | D£® | {x|-4£¼x¡Ü4} |
| A£® | m$¡Ý\frac{4}{3}$ | B£® | m£¾$\frac{4}{3}$ | C£® | m¡Ü$\frac{4}{3}$ | D£® | m$£¼\frac{4}{3}$ |