题目内容

14.已知函数f(x)=$\sqrt{x-3}$-$\frac{1}{\sqrt{7-x}}$的定义域为集合A,B={x|0≤x-1<8},C={x∈R|x<a或x>a+1}.
(1)求∁RA∩B
(2)若A∪C=R,求实数a的取值范围.

分析 (1)先求出集合A,化简集合B,根据 根据集合的运算求,(CRA)∩B;
(2)若A∪C=R,则可以比较两个集合的端点,得出参数所满足的不等式解出参数的取值范围.

解答 解:(1)由题意$\left\{\begin{array}{l}{3-x≥0}\\{7-x>0}\end{array}\right.$,解得7>x≥3,故A={x∈R|3≤x<7},
B={x∈Z|2<x<10}═{x∈Z|3,4,5,6,7,8,9},
∴(CRA)∩B={7,8,9}
(2)∵A∪C=R,C={x∈R|x<a或x>a+1}
∴$\left\{\begin{array}{l}{a≥3}\\{a+1<7}\end{array}\right.$,解得3≤a<6
∴实数a的取值范围是3≤a<6.

点评 本题考查集合关系中的参数取值问题,解题的关键是理解集合运算的意义,能借助数轴等辅助工具正确判断两个集合的关系及相应参数的范围,本题中取参数的范围是一个难点,易因为错判出错,求解时要注意验证等号能否成立.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网