题目内容

2.已知函数f(x)=x2+x-1
(1)若f(x)=5,求x的值;
(2)若f(x)≥f(a)对一切x∈R恒成立,求实数α的取值范围.

分析 (1)由二次方程的解法,可得x的值;
(2)由题意可得a2+a-1≤x2+x-1对一切x∈R恒成立,求得右边函数的最小值,再由二次不等式的解法,可得a的取值范围.

解答 解:(1)f(x)=5即为x2+x-6=0,
解得x=2或-3;
(2)f(x)≥f(a)对一切x∈R恒成立,
即为a2+a-1≤x2+x-1对一切x∈R恒成立,
由x2+x-1=(x+$\frac{1}{2}$)2-$\frac{5}{4}$≥-$\frac{5}{4}$,
当x=-$\frac{1}{2}$时,取得最小值-$\frac{5}{4}$,
即有a2+a-1≤-$\frac{5}{4}$,
即为(a+$\frac{1}{2}$)2≤0,
又(a+$\frac{1}{2}$)2≥0,
即有(a+$\frac{1}{2}$)2=0,
解得a=-$\frac{1}{2}$.
则实数a的取值范围为{-$\frac{1}{2}$}.

点评 本题考查二次方程和不等式的解法,考查不等式恒成立思想的运用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网