题目内容

已知:tan(
π
4
+α)=
1
5
,则
sin2α-sin2α
1-cos2α
的值为
-2
-2
分析:tan(
π
4
+α)=
1
5
=
1+tanα
1-tanα
,求得tanα 的值.再由
sin2α-sin2α
1-cos2α
=
2sinαcosα-sin2α
2sin2α
=
1
tanα
-
1
2
,运算求得结果.
解答:解:∵已知:tan(
π
4
+α)=
1
5
=
1+tanα
1-tanα
,解得tanα=-
2
3

 则
sin2α-sin2α
1-cos2α
=
2sinαcosα-sin2α
2sin2α
=
2cosα-sinα
2sinα
=
1
tanα
-
1
2
=-
3
2
-
1
2
=-2,
故答案为-2.
点评:本题主要考查三角函数的恒等变换及化简求值,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网