题目内容

已知:不等式x2-logmx<0.在数学公式上恒成立,则实数m的取值范围是________.


分析:根据不等式x2-logmx<0,在上恒成立,可转化为x2<logmx,在上恒成立,然后结合图形,考虑零界位置可求出m的范围.
解答:解:不等式x2-logmx<0,在上恒成立,
转化为x2<logmx,在上恒成立,
即x∈(0,)时,
函数f(x)=x2的图象恒在g(x)=logmx的图象的下方.
由图象可知0<m<1,若x=时,两图象相交,
,解得m=,所以m范围为
故答案为:
点评:本题主要考查了函数恒成立问题,同时考查了转化的思想和数形结合的思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网