ÌâÄ¿ÄÚÈÝ
ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªOÎª×ø±êԵ㣬µãAµÄ×ø±êΪ£¨a£¬b£©£¬µãBµÄ×ø±êΪ£¨cos¦Øx£¬sin¦Øx£©£¬ÆäÖÐa2+b2¡Ù0ÇҦأ¾0£®Éèf(x)=| OA |
| OB |
£¨1£©Èôa=
| 3 |
£¨2£©ÈôµãAÊǹýµã£¨-1£¬1£©ÇÒ·¨ÏòÁ¿Îª
| n |
£¨3£©¸ù¾Ý±¾ÌâÌõ¼þÎÒÃÇ¿ÉÒÔÖªµÀ£¬º¯Êýf£¨x£©µÄÐÔÖÊÈ¡¾öÓÚ±äÁ¿a¡¢bºÍ¦ØµÄÖµ£®µ±x¡ÊRʱ£¬ÊÔд³öÒ»¸öÌõ¼þ£¬Ê¹µÃº¯Êýf£¨x£©Âú×㡰ͼÏó¹ØÓÚµã(
| ¦Ð |
| 3 |
| ¦Ð |
| 6 |
·ÖÎö£º£¨1£©¸ù¾ÝÏòÁ¿ÊýÁ¿»ýµÄ¶¨Òå±íʾ³öº¯Êýf£¨x£©µÄ½âÎöʽ½«a=
£¬b=1£¬¦Ø=2´úÈëºó»¯¼ò£¬ÔÙÁîf£¨x£©=1½â³öxµÄÖµ¼´¿É£®
£¨2£©ÏÈд³öÖ±ÏßlµÄ·½³Ì£¬µÃµ½aÓëbµÄ¹ØÏµ´úÈëf£¨x£©Çó³öº¯Êýf£¨x£©µÄÖµÓòM£¬½â³ö¼¯ºÏPºóÁîP⊆Mºã³ÉÁ¢¼´¿É£®
£¨3£©¸ù¾ÝÈý½Çº¯ÊýµÄ¶Ô³ÆÐÔ¶Ôb·Ö´óÓÚ0ºÍСÓÚ0Á½ÖÖÇé¿ö½øÐзÖÎö£®
| 3 |
£¨2£©ÏÈд³öÖ±ÏßlµÄ·½³Ì£¬µÃµ½aÓëbµÄ¹ØÏµ´úÈëf£¨x£©Çó³öº¯Êýf£¨x£©µÄÖµÓòM£¬½â³ö¼¯ºÏPºóÁîP⊆Mºã³ÉÁ¢¼´¿É£®
£¨3£©¸ù¾ÝÈý½Çº¯ÊýµÄ¶Ô³ÆÐÔ¶Ôb·Ö´óÓÚ0ºÍСÓÚ0Á½ÖÖÇé¿ö½øÐзÖÎö£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒâf(x)=
•
=bsin¦Øx+acos¦Øx£¬
µ±a=
£¬b=1£¬¦Ø=2ʱ£¬f(x)=sin2x+
cos2x=2sin(2x+
)=1£¬?sin(2x+
)=
£¬
ÔòÓÐ2x+
=2k¦Ð+
»ò2x+
=2k¦Ð+
£¬k¡ÊZ£®
¼´x=k¦Ð-
»òx=k¦Ð+
£¬k¡ÊZ£®
ÓÖÒòΪx¡Ê[0£¬2¦Ð]£¬¹Êf£¨x£©=1ÔÚ[0£¬2¦Ð]ÄڵĽ⼯Ϊ{
£¬
£¬
£¬
}£®
£¨2£©ÓÉÌâÒ⣬lµÄ·½³ÌΪ-£¨x+1£©+£¨y-1£©=0?y=x+2£®AÔÚ¸ÃÖ±ÏßÉÏ£¬¹Êb=a+2£®
Òò´Ë£¬f(x)=(a+2)sin¦Øx+acos¦Øx=
sin(¦Øx+¦Õ)£¬
ËùÒÔ£¬f£¨x£©µÄÖµÓòM=[-
£¬
]£®
ÓÖx2+mx=0µÄ½âΪ0ºÍ-m£¬¹ÊҪʹP⊆Mºã³ÉÁ¢£¬
Ö»Ðè-m¡Ê[-
£¬
]£¬¶ø
=
¡Ý
¼´-
¡Üm¡Ü
£¬ËùÒÔmµÄ×î´óÖµ
£®
£¨3£©ÒòΪf(x)=
•
=bsin¦Øx+acos¦Øx=
sin(¦Øx+¦Õ)£¬
ÉèÖÜÆÚT=
£®
ÓÉÓÚº¯Êýf£¨x£©ÐëÂú×㡰ͼÏó¹ØÓÚµã(
£¬0)¶Ô³Æ£¬
ÇÒÔÚx=
´¦f£¨x£©È¡µÃ×îСֵ¡±£®
Òò´Ë£¬¸ù¾ÝÈý½Çº¯ÊýµÄͼÏóÌØÕ÷¿ÉÖª£¬
-
=
+
•T?
=
(
)?¦Ø=6n+3£¬n¡ÊN£®
ÓÖÒòΪ£¬ÐÎÈçf(x)=
sin(¦Øx+¦Õ)µÄº¯ÊýµÄͼÏóµÄ¶Ô³ÆÖÐÐͼÊÇf£¨x£©µÄÁãµã£¬¹ÊÐèÂú×ãsin(
¦Ø+¦Õ)=0£¬
¶øµ±¦Ø=6n+3£¬n¡ÊNʱ£¬
ÒòΪ
(6n+3)+¦Õ=2n¦Ð+¦Ð+¦Õ£¬n¡ÊN£»
ËùÒÔµ±ÇÒ½öµ±¦Õ=k¦Ð£¬k¡ÊZʱ£¬f£¨x£©µÄͼÏó¹ØÓÚµã(
£¬0)¶Ô³Æ£»
´Ëʱ£¬
?a=0£¬
=¡À1£®
£¨i£©µ±b£¾0£¬a=0ʱ£¬f£¨x£©=sin¦Øx£¬½øÒ»²½ÒªÊ¹x=
´¦f£¨x£©È¡µÃ×îСֵ£¬
ÔòÓÐf(
)=sin(
•¦Ø)=-1?
•¦Ø=2k¦Ð-
?¦Ø=12k-3£¬k¡ÊZ£»
Ó֦أ¾0£¬ÔòÓЦØ=12k-3£¬k¡ÊN*£»Òò´Ë£¬ÓÉ
¦Ø=6n+3£¬n¡ÊN¡Á
¦Ø=12k-3£¬n¡ÊN*
¿ÉµÃ¦Ø=12m+9£¬m¡ÊN£»
£¨ii£©µ±b£¼0£¬a=0ʱ£¬f£¨x£©=-sin¦Øx£¬½øÒ»²½ÒªÊ¹x=
´¦f£¨x£©È¡µÃ×îСֵ£¬
ÔòÓÐf(
)=-sin(
•¦Ø)=-1?
•¦Ø=2k¦Ð+
?¦Ø=12k+3£¬k¡ÊZ£»
Ó֦أ¾0£¬ÔòÓЦØ=12k+3£¬k¡ÊN£»Òò´Ë£¬ÓÉ
¦Ø=6n+3£¬n¡ÊN¡Á
¦Ø=12k-3£¬n¡ÊN*
¿ÉµÃ¦Ø=12m+3£¬m¡ÊN£»
×ÛÉÏ£¬Ê¹µÃº¯Êýf£¨x£©Âú×㡰ͼÏó¹ØÓÚµã(
£¬0)¶Ô³Æ£¬
ÇÒÔÚx=
´¦f£¨x£©È¡µÃ×îСֵ¡±µÄ³äÒªÌõ¼þÊÇ£º
¡°µ±b£¾0£¬a=0ʱ£¬¦Ø=12m+9£¨m¡ÊN£©»òµ±b£¼0£¬a=0ʱ£¬¦Ø=12m+3£¨m¡ÊN£©¡±£®
| OA |
| OB |
µ±a=
| 3 |
| 3 |
| ¦Ð |
| 3 |
| ¦Ð |
| 3 |
| 1 |
| 2 |
ÔòÓÐ2x+
| ¦Ð |
| 3 |
| ¦Ð |
| 6 |
| ¦Ð |
| 3 |
| 5¦Ð |
| 6 |
¼´x=k¦Ð-
| ¦Ð |
| 12 |
| ¦Ð |
| 4 |
ÓÖÒòΪx¡Ê[0£¬2¦Ð]£¬¹Êf£¨x£©=1ÔÚ[0£¬2¦Ð]ÄڵĽ⼯Ϊ{
| ¦Ð |
| 4 |
| 11¦Ð |
| 12 |
| 5¦Ð |
| 4 |
| 23¦Ð |
| 12 |
£¨2£©ÓÉÌâÒ⣬lµÄ·½³ÌΪ-£¨x+1£©+£¨y-1£©=0?y=x+2£®AÔÚ¸ÃÖ±ÏßÉÏ£¬¹Êb=a+2£®
Òò´Ë£¬f(x)=(a+2)sin¦Øx+acos¦Øx=
| (a+2)2+a2 |
ËùÒÔ£¬f£¨x£©µÄÖµÓòM=[-
| (a+2)2+a2 |
| (a+2)2+a2 |
ÓÖx2+mx=0µÄ½âΪ0ºÍ-m£¬¹ÊҪʹP⊆Mºã³ÉÁ¢£¬
Ö»Ðè-m¡Ê[-
| (a+2)2+a2 |
| (a+2)2+a2 |
| (a+2)2+a2 |
| 2(a+1)2+2 |
| 2 |
¼´-
| 2 |
| 2 |
| 2 |
£¨3£©ÒòΪf(x)=
| OA |
| OB |
| a2+b2 |
ÉèÖÜÆÚT=
| 2¦Ð |
| ¦Ø |
ÓÉÓÚº¯Êýf£¨x£©ÐëÂú×㡰ͼÏó¹ØÓÚµã(
| ¦Ð |
| 3 |
ÇÒÔÚx=
| ¦Ð |
| 6 |
Òò´Ë£¬¸ù¾ÝÈý½Çº¯ÊýµÄͼÏóÌØÕ÷¿ÉÖª£¬
| ¦Ð |
| 3 |
| ¦Ð |
| 6 |
| T |
| 4 |
| n |
| 2 |
| ¦Ð |
| 6 |
| 2¦Ð |
| ¦Ø |
| 2n+1 |
| 4 |
ÓÖÒòΪ£¬ÐÎÈçf(x)=
| a2+b2 |
| ¦Ð |
| 3 |
¶øµ±¦Ø=6n+3£¬n¡ÊNʱ£¬
ÒòΪ
| ¦Ð |
| 3 |
ËùÒÔµ±ÇÒ½öµ±¦Õ=k¦Ð£¬k¡ÊZʱ£¬f£¨x£©µÄͼÏó¹ØÓÚµã(
| ¦Ð |
| 3 |
´Ëʱ£¬
|
| b |
| |b| |
£¨i£©µ±b£¾0£¬a=0ʱ£¬f£¨x£©=sin¦Øx£¬½øÒ»²½ÒªÊ¹x=
| ¦Ð |
| 6 |
ÔòÓÐf(
| ¦Ð |
| 6 |
| ¦Ð |
| 6 |
| ¦Ð |
| 6 |
| ¦Ð |
| 2 |
Ó֦أ¾0£¬ÔòÓЦØ=12k-3£¬k¡ÊN*£»Òò´Ë£¬ÓÉ
¦Ø=6n+3£¬n¡ÊN¡Á
¦Ø=12k-3£¬n¡ÊN*
¿ÉµÃ¦Ø=12m+9£¬m¡ÊN£»
£¨ii£©µ±b£¼0£¬a=0ʱ£¬f£¨x£©=-sin¦Øx£¬½øÒ»²½ÒªÊ¹x=
| ¦Ð |
| 6 |
ÔòÓÐf(
| ¦Ð |
| 6 |
| ¦Ð |
| 6 |
| ¦Ð |
| 6 |
| ¦Ð |
| 2 |
Ó֦أ¾0£¬ÔòÓЦØ=12k+3£¬k¡ÊN£»Òò´Ë£¬ÓÉ
¦Ø=6n+3£¬n¡ÊN¡Á
¦Ø=12k-3£¬n¡ÊN*
¿ÉµÃ¦Ø=12m+3£¬m¡ÊN£»
×ÛÉÏ£¬Ê¹µÃº¯Êýf£¨x£©Âú×㡰ͼÏó¹ØÓÚµã(
| ¦Ð |
| 3 |
ÇÒÔÚx=
| ¦Ð |
| 6 |
¡°µ±b£¾0£¬a=0ʱ£¬¦Ø=12m+9£¨m¡ÊN£©»òµ±b£¼0£¬a=0ʱ£¬¦Ø=12m+3£¨m¡ÊN£©¡±£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÏòÁ¿µÄÊýÁ¿»ýÔËËãºÍÈý½Çº¯ÊýµÄÁ½½ÇºÍÓë²îµÄÕýÏÒ¹«Ê½µÄÓ¦Óã®ÊôÄÑÌ⣮ƽʱҪעÒâ»ù´¡ÖªÊ¶µÄÕÆÎÕÓöµ½ÄÑÌâʱ·½ÄÜÓÈжø½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿