题目内容

13.若x,y满足$\left\{\begin{array}{l}y≥0\\ x-y+3≥0\\ kx-y+3≥0\end{array}\right.$且z=2x+y的最大值为4,则k的值为(  )
A.$-\frac{3}{2}$B.$\frac{3}{2}$C.$-\frac{2}{3}$D.$\frac{2}{3}$

分析 根据已知的约束条件 画出满足约束条件的可行域,再用目标函数的几何意义,求出求出直线2x+y=4与y=0相交于B(2,0),即可求解k值.

解答 解:先作出不等式组$\left\{\begin{array}{l}{y≥0}\\{x-y+3≥0}\end{array}\right.$对应的平面区域,
直线kx-y+3=0过定点(0,3),
∵z=2x+y的最大值为4,∴作出直线2x+y=4,
由图象知直线2x+y=4与y=0相交于B(2,0),
同时B也在直线kx-y+3=0上,
代入直线得2k+3=0,即k=$-\frac{3}{2}$,
故选:A.

点评 本题考查的知识点是线性规划,考查画不等式组表示的可行域,考查数形结合求目标函数的最值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网