ÌâÄ¿ÄÚÈÝ
Èç¹ûÒ»¸önÃæÌå¹²ÓÐm¸öÃæÊǵÈÑüÈý½ÇÐΣ¬ÄÇÎÒÃdzÆÕâ¸önÃæÌåµÄ¡°µÈ¶È¡±Îª
£¬ÏÖÔÚÒÔÏÂ˵·¨£º
¢ÙÒÑÖªp£ºÒ»¸öÈýÀâ×¶µÄ¡°µÈ¶È¡±ÊÇ1£¬q£º¸ÃËÄÃæÌåΪÕýËÄÃæÌ壬ÔòpÊÇqµÄ³äÒªÌõ¼þ£»
¢ÚÒÑÖª·½³Ìsinx=
£¬x£¨0£¬¦Ð£©£¬Ôò¸Ã·½³ÌÒ»¶¨ÓÐÁ½½â£»
¢ÛÈôËÄÀâ×¶´Óͬһ¸ö¶¥µã³ö·¢µÄËÄÌõÀⳤÓëµ×Ãæ±ß³¤¾ùΪa£¬ÔòÆäµÈ¶ÈΪ
£¬ÇÒÌå»ý
a3£»
¢ÜÕýÁùÀâ×¶µÄµÈ¶ÈΪ
£»
¢ÝÒÑÖªÀⳤΪ1µÄÕý·½ÌåABCD-A1B1C1D1£¬ÏÖ½ØÈ¥Ò»¶¥µãΪAµÄÈýÀâ×¶A-BCA1£¬ÔòÊ£Ó༸ºÎÌåµÄµÈ¶ÈΪ
£¬ÇÒÌå»ýΪ
£®
ÆäÖÐÕýÈ·µÄΪ £®
| m |
| n |
¢ÙÒÑÖªp£ºÒ»¸öÈýÀâ×¶µÄ¡°µÈ¶È¡±ÊÇ1£¬q£º¸ÃËÄÃæÌåΪÕýËÄÃæÌ壬ÔòpÊÇqµÄ³äÒªÌõ¼þ£»
¢ÚÒÑÖª·½³Ìsinx=
| m |
| n |
¢ÛÈôËÄÀâ×¶´Óͬһ¸ö¶¥µã³ö·¢µÄËÄÌõÀⳤÓëµ×Ãæ±ß³¤¾ùΪa£¬ÔòÆäµÈ¶ÈΪ
| 4 |
| 5 |
| ||
| 6 |
¢ÜÕýÁùÀâ×¶µÄµÈ¶ÈΪ
| 6 |
| 7 |
¢ÝÒÑÖªÀⳤΪ1µÄÕý·½ÌåABCD-A1B1C1D1£¬ÏÖ½ØÈ¥Ò»¶¥µãΪAµÄÈýÀâ×¶A-BCA1£¬ÔòÊ£Ó༸ºÎÌåµÄµÈ¶ÈΪ
| 4 |
| 7 |
| 5 |
| 6 |
ÆäÖÐÕýÈ·µÄΪ
¿¼µã£ºÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃ
רÌ⣺ж¨Òå
·ÖÎö£º¸ù¾ÝµÈ¶ÈµÄ¶¨ÒåÒ»Ò»Åжϣ¬¶ÔÓÚ¢Ú¿ÉÈ¡ÌØÊâÖµx=
£¬Í¬Ê±Òª×¢ÒâÀâ×¶µÄÌå»ý¹«Ê½ÊÇV=
sh£¬²»¹æÔò¼¸ºÎÌåµÄÌå»ýÔËÓüä½Ó·¨ÇóµÃ£®
| ¦Ð |
| 2 |
| 1 |
| 3 |
½â´ð£º
½â£º¶ÔÓÚ¢Ù£¬ÈôÒ»¸öÈýÀâ×¶µÄ¡°µÈ¶È¡±ÊÇ1£¬Ö»ÄÜ˵Ã÷ÆäËĸöÃæ¾ùΪµÈÑüÈý½ÇÐΣ¬µ«²»Ò»¶¨¾ùΪµÈ±ßÈý½ÇÐΣ¬¹ÊpÊÇqµÄ±ØÒª²»³ä·ÖÌõ¼þ£®¹Ê¢Ù´í£»
¶ÔÓÚ¢Ú£¬Áîf£¨x£©=
£¬g£¨x£©=sinx£¬x¡Ê£¨0£¬¦Ð£©£¬ÒòΪ
¡Ê[0£¬1]£¬¹Êµ±x=
ʱ£¬f£¨x£©£¬g£¨x£©Ö»ÓÐÒ»¸ö½»µã£¬¼´·½³ÌÖ»ÓÐÒ»¸öʵ¸ù£®¹Ê¢Ú´í£»
¶ÔÓÚ¢Û£¬¿ÉÖª¸ÃÀâ׶ΪÕýËÄÀâ×¶£¬¹²ÓÐ5¸öÃæ£¬ÆäÖÐ4¸öΪµÈÑüÈý½ÇÐΣ¬¹ÊµÈ¶ÈΪ
£¬Ìå»ýΪV=V=
a2
=
a3£¬¹Ê¢Û¶Ô£»
¶ÔÓڢܣ¬ÕýÁùÀâ×¶ÓÐ7¸öÃæ£¬ÆäÖвàÃæÓÐ6¸öµÈÑüÈý½ÇÐΣ¬¹ÊµÈ¶ÈΪ
£¬¹Ê¢Ü¶Ô£»
¶ÔÓڢݣ¬½ØÈ¥µÄΪһ¸öÈýÀâ×¶£¬×ܵÄÃæÊýΪ7£¬ÆäÖеÈÑüÈý½ÇÐÎ3¸ö£¬µÈ±ßÈý½ÇÐÎ1¸ö£¬¹ÊµÈ¶ÈΪ
£¬Ê£Ó༸ºÎÌåµÄÌå»ýΪ13-
•
•1•1•1=
£¬¹Ê¢Ý¶Ô£®
¹Ê´ð°¸Îª£º¢Û¢Ü¢Ý£®
¶ÔÓÚ¢Ú£¬Áîf£¨x£©=
| m |
| n |
| m |
| n |
| ¦Ð |
| 2 |
¶ÔÓÚ¢Û£¬¿ÉÖª¸ÃÀâ׶ΪÕýËÄÀâ×¶£¬¹²ÓÐ5¸öÃæ£¬ÆäÖÐ4¸öΪµÈÑüÈý½ÇÐΣ¬¹ÊµÈ¶ÈΪ
| 4 |
| 5 |
| 1 |
| 3 |
a2-(
|
| ||
| 6 |
¶ÔÓڢܣ¬ÕýÁùÀâ×¶ÓÐ7¸öÃæ£¬ÆäÖвàÃæÓÐ6¸öµÈÑüÈý½ÇÐΣ¬¹ÊµÈ¶ÈΪ
| 6 |
| 7 |
¶ÔÓڢݣ¬½ØÈ¥µÄΪһ¸öÈýÀâ×¶£¬×ܵÄÃæÊýΪ7£¬ÆäÖеÈÑüÈý½ÇÐÎ3¸ö£¬µÈ±ßÈý½ÇÐÎ1¸ö£¬¹ÊµÈ¶ÈΪ
| 4 |
| 7 |
| 1 |
| 3 |
| 1 |
| 2 |
| 5 |
| 6 |
¹Ê´ð°¸Îª£º¢Û¢Ü¢Ý£®
µãÆÀ£º±¾ÌâÊÇÒ»µÀж¨ÒåÌ⣬¿¼²éѧÉúµÄÀí½âÄÜÁ¦ºÍ¿Õ¼äÏëÏóÄÜÁ¦ºÍÅжÏÄÜÁ¦£¬ÊÇÒ»µÀÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖª¶¨ÒåÔÚRÉϵĿɵ¼º¯Êýy=f£¨x£©µÄµ¼º¯ÊýΪf¡ä£¨x£©£¬Âú×ãf£¨x£©£¼f¡ä£¨x£©£¬ÇÒf£¨0£©=2£¬Ôò²»µÈʽ
£¾2µÄ½â¼¯Îª£¨¡¡¡¡£©
| f(x) |
| ex |
| A¡¢£¨-¡Þ£¬0£© |
| B¡¢£¨0£¬+¡Þ£© |
| C¡¢£¨-¡Þ£¬2£© |
| D¡¢£¨2£¬+¡Þ£© |
ÒÑÖª¸´Êýz=
£¬Ôò
µÄʵ²¿Îª£¨¡¡¡¡£©
| 1+3i |
| 1-i |
. |
| z |
| A¡¢1 | B¡¢2 | C¡¢-2 | D¡¢-1 |
ÒÑÖªº¯Êýf£¨x+1£©ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬Èô¶ÔÓÚÈÎÒâ¸ø¶¨µÄ²»µÈʵÊýx1£¬x2£¬²»µÈʽx1f£¨x1£©+x2f£¨x2£©£¼x1f£¨x2£©+x2f£¨x1£©ºã³ÉÁ¢£¬Ôò²»µÈʽf£¨1-x£©£¼0µÄ½â¼¯Îª£¨¡¡¡¡£©
| A¡¢£¨1£¬+¡Þ£© |
| B¡¢£¨-¡Þ£¬0£© |
| C¡¢£¨0£¬+¡Þ£© |
| D¡¢£¨-¡Þ£¬1£© |