题目内容
4.已知复数z满足zi=2i+x(x∈R),若z的虚部为2,则|z|=( )| A. | 2 | B. | 2$\sqrt{2}$ | C. | $\sqrt{5}$ | D. | $\sqrt{3}$ |
分析 利用复数的代数形式混合运算化简复数,然后求解复数的模.
解答 解:复数z满足zi=2i+x(x∈R),
可得z=$\frac{2i+x}{i}$=2-xi.
若z的虚部为2,
可得x=-2.
z=2-2i.
∴|z|=2$\sqrt{2}$
故选:B.
点评 本题考查复数的代数形式混合运算,复数的模以及复数的基本概念的应用,考查计算能力.
练习册系列答案
相关题目
15.2016年1月6日北京时间上午11时30分,朝鲜中央电视台宣布“成功进行了氢弹试验”,再次震动世界,朝鲜声明氢弹试验对周边生态环境未产生任何负面影响,未提及试验地点.中国外交部发表措辞严厉的声明对朝鲜核试验“坚决反对”,朝鲜“氢弹试验”事件引起了我国公民热议,其中丹东市(丹东市和朝鲜隔江)某QQ聊天群有300名网友,新疆乌鲁木齐某微信群有200名微信好友,为了解不同地区我国公民对“氢弹试验”事件的关注程度,现采用分层抽样的方法,从中抽取了100名好友,先分别统计了他们在某时段发表的信息条数,再将两地网友留言信息条数分成5组:[40,50),[50,60),[60,70),[70,80),[80,90),分别加以统计,得到如图所示的频率分布直方图.

(1)求丹东市网友的平均留言条数(保留整数);
(2)为了进一步开展调查,从样本中留言条数不足50条的网友中随机抽取2人,求至少抽到一名乌鲁木齐市网友的概率;
(3)规定“留言条数”不少于70条为“强烈关注”.
①请你根据已知条件完成下列2×2的列联表;
②判断是否有90%的把握认为“强烈关注”与网友所在的地区有关?
附:临界值表及参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
(1)求丹东市网友的平均留言条数(保留整数);
(2)为了进一步开展调查,从样本中留言条数不足50条的网友中随机抽取2人,求至少抽到一名乌鲁木齐市网友的概率;
(3)规定“留言条数”不少于70条为“强烈关注”.
①请你根据已知条件完成下列2×2的列联表;
| 强烈关注 | 非强烈关注 | 合计 | |
| 丹东市 | 15 | 45 | 60 |
| 乌鲁木齐市 | 15 | 25 | 40 |
| 合计 | 30 | 70 | 100 |
附:临界值表及参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
12.已知集合A={x|x2-5x+6≤0},B={x∈Z|2x>1},则A∩B=( )
| A. | [2,3] | B. | (0,+∞) | C. | (0,2)∪(3,+∞) | D. | (0,2]∪[3,+∞) |
19.若函数f(x)=sin(2x+φ)(-π<φ<0)为偶函数,则函数f(x)在区间$[0,\frac{π}{4}]$上的取值范围是( )
| A. | [-1,0] | B. | $[-\frac{{\sqrt{2}}}{2},0]$ | C. | $[0,\frac{{\sqrt{2}}}{2}]$ | D. | [0,1] |
14.下列各组函数中,f(x)与g(x)表示同一函数的是( )
| A. | f(x)=x-1与g(x)=$\sqrt{{x}^{2}-2x+1}$ | B. | f(x)=x与g(x)=$\frac{{x}^{2}}{x}$ | ||
| C. | f(x)=x与g(x)=$\root{3}{x^3}$ | D. | f(x)=$\frac{{x}^{2}-4}{x-2}$与g(x)=x+2 |