题目内容
14.已知如下等式:2+4=6;8+10+12=14+16;18+20+22+24=26+28+30;…以此类推,则2020会出现在第( )个等式中.| A. | 30 | B. | 31 | C. | 32 | D. | 33 |
分析 从已知等式分析,发现规律为:各等式首项分别为2×1,2(1+3),2(1+3+5),…,即可得出结论.
解答 解:①2+4=6;
②8+10+12=14+16;
③18+20+22+24=26+28+30,…
其规律为:各等式首项分别为2×1,2(1+3),2(1+3+5),…,
所以第n个等式的首项为2[1+3+…+(2n-1)]=2×$\frac{n(1+2n-1)}{2}$=2n2,
当n=31时,等式的首项为2×312=1922,
当n=32时,等式的首项为2×322=2048,
所以2020在第31个等式中,
故选:B.
点评 本题考查归纳推理,难点是根据能够找出数之间的内在规律,考查观察、分析、归纳的能力,是基础题.
练习册系列答案
相关题目
5.学校餐厅每天供应500名学生用餐,每星期一有A、B两种菜可供选择.调查表明,凡是在这星期一选A种菜的,下星期一会有20%改选B种菜;而选B种菜的,下星期一会有30%改选A菜.用an,bn分别表示在第n个星期选A的人数和选B的人数,若a1=300,则a20=( )
| A. | 260 | B. | 280 | C. | 300 | D. | 320 |
2.在一段时间内,某种商品的价格x(元)和某大型公司的需求量y(千件)之间的一组数据如表:
根据上表可得回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=0.76,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$.据此估计,某种商品的价格为15元时,求其需求量约为多少千件?
| 价格x | 8.2 | 8.6 | 10.0 | 11.3 | 11.9 |
| 需求量y | 6.2 | 7.5 | 8.0 | 8.5 | 9.8 |
6.关于衡量两个变量y与x之间线性相关关系的相关系数r与相关指数R2中,下列说法中正确的是( )
| A. | r越大,两变量的线性相关性越强 | B. | R2越大,两变量的线性相关性越强 | ||
| C. | r的取值范围为(-∞,+∞) | D. | R2的取值范围为[0,+∞) |
3.函数$y=sin({4x-\frac{π}{3}})$的图象的一条对称轴方程是( )
| A. | $x=-\frac{11π}{24}$ | B. | $x=\frac{π}{8}$ | C. | $x=\frac{π}{4}$ | D. | $x=\frac{11π}{24}$ |