题目内容
右图是某赛季甲、乙两名篮球运动员参加的每场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数之和是( )
A.65 B.64 C.63 D.62
已知两点,若点是圆上的动点,则面积的最小值为( )
A.6 B. C.8 D.
设为实数,函数的导函数,且是偶函数,则曲线在原点处的切线方程为( )
A. B. C. D.
设函数的图象与直线,及轴所围成图形的面积称为函数在上的面积,已知函数在[0,]上的面积为(n∈N*),则函数在[,]上的面积为________.
为得到函数的图像,只需将函数的图像( )
A.向左平移个长度单位 B.向右平移个长度单位
C.向左平移个长度单位 D.向右平移个长度单位
选修4-4:坐标系与参数方程
已知极坐标系的极点在直角坐标系的原点,极轴与轴的正半轴重合,曲线的极坐标方程为,直线的参数方程为(为参数,).求曲线上的点到直线的距离的最大值.
如图,在正三棱柱中,点在边上,.
(1)求证:平面;
(2)如果点是的中点,求证:平面.
某工厂去年某产品的年产量为100万只,每只产品的销售价为10元,固定成本为8元.今年,工厂第一次投入100万元(科技成本),并计划以后每年比上一年多投入100万元(科技成本),预计产量年递增10万只,第n次投入后,每只产品的固定成本为(k>0,k为常数,且n≥0),若产品销售价保持不变,第n次投入后的年利润为万元.
(1)求k的值,并求出的表达式;
(2)问从今年算起第几年利润最高?最高利润为多少万元?
已知,且.
(1)若求与的夹角;
(2)若,求的值.