题目内容

已知数列{an}的前n项和是Sn,且-1,Sn,an+1成等差数列(n∈N*),a1=1.
(1)求数列{an}的通项公式.
(2)若数列{bn}满足b1=a1,bn+1=bn+
1
3an
(n≥1)求数列{bn}的前n项和Tn
(3)函数f(x)=log3x,设数列{cn}满足cn=
1
(n+3)[f(an)+2]
求数列{cn}的前n项和Rn
考点:数列的求和
专题:综合题,等差数列与等比数列
分析:(1)由2Sn=an+1-1,当n≥2时,2Sn-1=an-1,两式相减得
an+1
an
=3
,再求得
a2
a1
=3,由此可判断an}是等比数列,可求an
(2)利用累加法可求bn,再由分组求和可得Tn
(3)表示出cn,拆项后利用裂项相消法可求得Rn.注意消项规律;
解答: 解:(1)∵2Sn=an+1-1,当n≥2时,2Sn-1=an-1,
∴2(Sn-Sn-1)=an+1-an
an+1
an
=3

∵2a1=a2-1,∴a2=3,
a2
a1
=3,
∴{an}是以1为首项,3为公比的等比数列,
an=3n-1
(2)bn+1=bn+
1
3•3n-1
,∴bn-bn-1=
1
3n-1

累加得bn=
3
2
(1-
1
3n
)

∴Tn=b1+b2+…+bn=
3
2
n-
3
4
(1-
1
3n
)

(3)cn=
1
(n+3)(n+1)
=
1
2
(
1
n+1
-
1
n+3
)

Rn=
1
2
[(
1
2
-
1
4
+(
1
3
-
1
5
)
+(
1
4
-
1
6
+…+(
1
n+1
-
1
n+3
)
]
=
1
2
[
5
6
-
2n+5
(n+2)(n+3)
].
点评:该题考查由递推式求数列通项、数列求和、等比数列的性质,裂项相消法对数列求和是高考考查的重点内容,要熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网