题目内容
16.完成一项装修工程,请木工共需付工资每人500元,请瓦工共需付工资每人400元,现有工人工资预算20000元,设木工x人,瓦工y人,则工人满足的关系式是( )| A. | 5x+4y<200 | B. | 5x+4y≥200 | C. | 5x+4y=200 | D. | 5x+4y≤200 |
分析 由题意可得总的工资50x+40y≤2000,化简即可.
解答 解:由题意可得:请木工需付工资每人500元,请瓦工需付工资每人400元,
设木工x人,瓦工y人,可得总的工资为500x+400y,
又因为现有工人工资预算20000元,故500x+400y≤20000,
化简可得5x+4y≤200,
故选:D.
点评 本题考查简单线性规划的应用,如何建模是解决这类问题的关键,属基础题.
练习册系列答案
相关题目
6.2017年4月1日,中共中央、国务院决定设立的国家级新区--雄安新区.雄安新区建立后,在该区某街道临近的A路口和B路口的车流量变化情况,如表所示:
(1)求前5天通过A路口车流量的平均值和通过B路口的车流量的方差,
(2)根据表中数据我们认为这两个临近路口有较强的线性相关关系,第10日在A路口测得车流量为3百辆时,你能估计这一天B路口的车流量吗?大约是多少呢?(最后结果保留两位小数)(参考公式:$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=7}^n{{{({{x_i}-\overline x})}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$,)
| 天数t(单位:天) | 1日 | 2日 | 3日 | 4日 | 5日 |
| A路口车流量x(百辆) | 0.2 | 0.5 | 0.8 | 0.9 | 1.1 |
| B路口车流量y(百辆) | 0.23 | 0.22 | 0.5 | 1 | 1.5 |
(2)根据表中数据我们认为这两个临近路口有较强的线性相关关系,第10日在A路口测得车流量为3百辆时,你能估计这一天B路口的车流量吗?大约是多少呢?(最后结果保留两位小数)(参考公式:$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=7}^n{{{({{x_i}-\overline x})}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$,)
4.全集U={0,1,3,5,6,8},集合A={ 1,5,8 },B={2},则集合(∁UA)∪B=( )
| A. | {0,2,3,6} | B. | { 0,3,6} | C. | {2,1,5,8} | D. | ∅ |
1.下列命题中正确的是( )
| A. | 若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$ | B. | 若|$\overrightarrow{a}$|=1,则$\overrightarrow{a}$=1 | C. | 若|$\overrightarrow{a}$|>|$\overrightarrow{b}$|,则$\overrightarrow{a}$>$\overrightarrow{b}$ | D. | 若$\overrightarrow{a}$=$\overrightarrow{b}$,$\overrightarrow{a}$∥$\overrightarrow{b}$ |
8.若a>b>0,则下列不等式一定不成立的是( )
| A. | $\frac{1}{a}$<$\frac{1}{b}$ | B. | log2a>log2b | C. | a2+b2≤2a+2b-2 | D. | b<$\sqrt{ab}$<$\frac{a+b}{2}$<a |