题目内容

12.已知数列{an}前n项和为Sn,a1=-2,且满足Sn=$\frac{1}{2}$an+1+n+1(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=log3(-an+1),求数列{$\frac{1}{{{b}_{n}b}_{n+2}}$}前n项和为Tn,求证Tn<$\frac{3}{4}$.

分析 (I)Sn=$\frac{1}{2}$an+1+n+1(n∈N*).n≥2时,an=Sn-Sn-1=$\frac{1}{2}$an+1+n+1-$(\frac{1}{2}{a}_{n}+n)$,化为:an+1=3an-2,可得:an+1-1=3(an-1),利用等比数列的通项公式即可得出.
(II)bn=log3(-an+1)=n,可得$\frac{1}{{b}_{n}{b}_{n+2}}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$.再利用“裂项求和”方法与数列的单调性即可证明.

解答 (I)解:∵Sn=$\frac{1}{2}$an+1+n+1(n∈N*).∴n=1时,-2=$\frac{1}{2}$a2+2,解得a2=-8.
n≥2时,an=Sn-Sn-1=$\frac{1}{2}$an+1+n+1-$(\frac{1}{2}{a}_{n}+n)$,
化为:an+1=3an-2,可得:an+1-1=3(an-1),
n=1时,a2-1=3(a1-1)=-9,
∴数列{an-1}是等比数列,首项为-3,公比为3.
∴an-1=-3n,即an=1-3n
(II)证明:bn=log3(-an+1)=n,
∴$\frac{1}{{b}_{n}{b}_{n+2}}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$.
∴数列{$\frac{1}{{{b}_{n}b}_{n+2}}$}前n项和为Tn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})$+$(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{2}$$(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$<$\frac{3}{4}$.
∴Tn<$\frac{3}{4}$.

点评 本题考查了“裂项求和”方法、等比数列的通项公式、数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网