题目内容
设x,y,z∈R+,求证:
+
+
≥
.
| x |
| y+z |
| y |
| x+z |
| z |
| x+y |
| 3 |
| 2 |
设S=x+y+z
+
+
=
+
+
-3
≥
-3
=
-3=
∴原不等式成立.
| x |
| y+z |
| y |
| x+z |
| z |
| x+y |
=
| S |
| y+z |
| S |
| x+z |
| S |
| x+y |
≥
| 9 | ||||||
|
=
| 9 |
| 2 |
| 3 |
| 2 |
∴原不等式成立.
练习册系列答案
相关题目