题目内容

12.已知椭圆M过定点B(-4,0),且和定圆(x-4)2+y2=16相切,则动圆圆心M的轨迹方程为$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x≤-2).

分析 动圆圆心为M,半径为r,已知圆圆心为C,半径为4 由题意知:MA=r,MC=r+4,或MA=r+3,MC=r,所以|MC-MA|=4 即动点M到两定点的距离之差为常数4,M在以A、C为焦点的双曲线上,且2a=4,2c=8,从而可得动圆圆心M的轨迹方程.

解答 解:动圆圆心为M,半径为r,已知圆圆心为C,半径为4 由题意知:MA=r,MC=r+4,或MA=r+3,MC=r,
所以|MC-MA|=4
即动点M到两定点的距离之差为常数4,M在以A、C为焦点的双曲线上,且2a=4,2c=8
∴b=2$\sqrt{3}$,
∴动圆圆心M的轨迹方程为:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1.
故答案为:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1.

点评 本题考查圆与圆的位置关系,考查双曲线的定义,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网