题目内容
1.设△ABC的三个内角A,B,C的对边分别为a,b,c,且cos(B-C)+cosA=$\frac{3}{2}$,a2=bc.(1)求角A的大小;
(2)名△ABC的面积为4$\sqrt{3}$,求△ABC的周长.
分析 (1)由题意和两角和与差的三角函数公式可得sinBsinC=$\frac{3}{4}$,结合正弦定理可得sinA=$\frac{\sqrt{3}}{2}$,可得A=60°或120°,验证排除A=120°即可;
(2)由余弦定理和已知可得b=c,再由面积公式可得bc=16,联立可得bc的值,进而可得a值,相加可得周长.
解答 解:(1)∵cos(B-C)+cosA=$\frac{3}{2}$,
∴cos(B-C)-cos(B+C)=$\frac{3}{2}$,
∴cosBcosC+sinBsinC-cosBcosC+sinBsinC=$\frac{3}{2}$,
∴sinBsinC=$\frac{3}{4}$,又∵a2=bc,
∴由正弦定理可得sin2A=sinBsinC=$\frac{3}{4}$,
∴sinA=$\frac{\sqrt{3}}{2}$,A=60°或120°,
若A=120°,则cos(B-C)+cosA=cos(B-C)-$\frac{1}{2}$=$\frac{3}{2}$,
∴cos(B-C)=2,显然矛盾,故A=60°;
(2)由余弦定理可得a2=b2+c2-2bccosA=b2+c2-bc,
∵a2=bc,∴bc=b2+c2-bc,即(b-c)2=0,故b=c,
再由面积公式可得$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}}{4}$bc=4$\sqrt{3}$,故bc=16,
∴由b=c且bc=16可得b=c=4,
∴a2=bc=16,解得a=4,
∴△ABC的周长为4+4+4=12
点评 本题考查解三角形,涉及正余弦定理和三角形的面积公式,属中档题.
练习册系列答案
相关题目
16.集合M是满足下列性质的函敖f(x)的全体;存在非零常数T,对任意X∈R,有f(x+T)=Tf(x)成立,已知f(x)=x,g(x)=a,(a>0且a≠1)则( )
| A. | f(x)∈M且g(x)∈M | B. | f(x)∉M,g(x)∈M | C. | f(x)∈M,g(x)∉M | D. | f(x)∉M且g(x)∉M |