题目内容
已知:数列{an}是等差数列,{bn}是等比数列,cn=an-bn,c1=0,c2=
,c3=
,c4=
.
(1)求数列{an},{bn}的通项公式;
(2)求和:a1a2-a2a3+a3a4-a4a5+…+(-1)n+1anan+1.
| 1 |
| 6 |
| 2 |
| 9 |
| 7 |
| 54 |
(1)求数列{an},{bn}的通项公式;
(2)求和:a1a2-a2a3+a3a4-a4a5+…+(-1)n+1anan+1.
(1)c1=0,则c1=a1-b1=0
c2=
=a1+a2+b1+b2=2a1+d+b1+b1q
c3=
=3a1+3d+b1+b1q+b1q2
c4=
=4a1+6d+b1+b1q+b1q2+b1q3.
解得:a1=b1=1,d=
,q=
∴an=
,bn=(
)n-1
(2)当n偶数时,a1a2-a2a3+a3a4-a4a5+…+(-1)n+1anan+1
=a2(a1-a3)+a4(a3 -a5)…+an(an-1-an+1)
=-(a2+a4+…+an)
=-
当n奇数时,a1a2-a2a3+a3a4-a4a5+…+(-1)n+1anan+1
=a2(a1-a3)+a4(a3 -a5)…+an-1(an-2-an)+anan+1
=-
+
×
=
c2=
| 1 |
| 6 |
c3=
| 2 |
| 9 |
c4=
| 7 |
| 54 |
解得:a1=b1=1,d=
| 1 |
| 2 |
| 4 |
| 3 |
∴an=
| n+1 |
| 2 |
| 4 |
| 3 |
(2)当n偶数时,a1a2-a2a3+a3a4-a4a5+…+(-1)n+1anan+1
=a2(a1-a3)+a4(a3 -a5)…+an(an-1-an+1)
=-(a2+a4+…+an)
=-
| n(n+4) |
| 8 |
当n奇数时,a1a2-a2a3+a3a4-a4a5+…+(-1)n+1anan+1
=a2(a1-a3)+a4(a3 -a5)…+an-1(an-2-an)+anan+1
=-
| (n-1)(n+3) |
| 8 |
| n+1 |
| 2 |
| n+2 |
| 2 |
=
| n2+4n+7 |
| 8 |
练习册系列答案
相关题目