题目内容

已知:数列{an}是等差数列,{bn}是等比数列,cn=an-bn,c1=0,c2=
1
6
c3=
2
9
c4=
7
54

(1)求数列{an},{bn}的通项公式;
(2)求和:a1a2-a2a3+a3a4-a4a5+…+(-1)n+1anan+1
(1)c1=0,则c1=a1-b1=0
c2=
1
6
=a1+a2+b1+b2=2a1+d+b1+b1q
c3=
2
9
=3a1+3d+b1+b1q+b1q2
c4=
7
54
=4a1+6d+b1+b1q+b1q2+b1q3
解得:a1=b1=1,d=
1
2
,q=
4
3

an=
n+1
2
bn=(
4
3
)n-1

(2)当n偶数时,a1a2-a2a3+a3a4-a4a5+…+(-1)n+1anan+1
=a2(a1-a3)+a4(a3 -a5)…+an(an-1-an+1
=-(a2+a4+…+an
=-
n(n+4)
8

当n奇数时,a1a2-a2a3+a3a4-a4a5+…+(-1)n+1anan+1
=a2(a1-a3)+a4(a3 -a5)…+an-1(an-2-an)+anan+1
=-
(n-1)(n+3)
8
+
n+1
2
×
n+2
2

=
n2+4n+7
8
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网