题目内容

1.如图是函数f(x)=x3+bx2+cx+d的大致图象,则x1+x2等于(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.2D.$\frac{12}{3}$

分析 由图象知f(x)=0的根为0,1,2,求出函数解析式,x1,x2为导函数的两根,可结合根与系数求解.

解答 解:由图象知f(x)=0的根为0,1,2,∴d=0.
∴f(x)=x3+bx2+cx=x(x2+bx+c)=0.
∴x2+bx+c=0的两个根为1和2.∴b=-3,c=2.
∴f(x)=x3-3x2+2x.∴f′(x)=3x2-6x+2.
∵x1,x2为3x2-6x+2=0的两根,∴x1+x2=2,
故选:C.

点评 本题考查了识图能力,以及极值与导数的关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网