题目内容

设数列{an}的首项a1=1,前n项和Sn满足关系式:3tSn-(2t+3)Sn-1=3t (t>0,n=2,3,4…).

(1)求证:数列{an}是等比数列;

(2)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f()(n=2,3,4…),求数列{bn}的通项bn

(3)求和:b1b2b2b3+b3b4-…+b2n-1b2nb2nb2n+1.

解:(1)由S1=a1=1,S2=1+a2,得3t(1+a2)-(2t+3)=3t.    ∴a2=.

又3tSn-(2t+3)Sn-1=3t,                                             ①

3tSn-1-(2t+3)Sn-2=3t                                                

①-②得3tan-(2t+3)an-1=0.

,n=2,3,4…,    所以{an}是一个首项为1公比为的等比数列

(2)由f(t)= =,得bn=f()=+bn-1.

可见{bn}是一个首项为1,公差为的等差数列.   于是bn=1+(n-1)=;

(3)由bn=,可知{b2n-1}和{b2n}是首项分别为1和,公差均为的等差数列,于是b2n=,

b1b2b2b3+b3b4b4b5+…+b2n-1b2nb2nb2n+1

=b2(b1b3)+b4(b3b5)+…+b2n(b2n-1b2n+1)

=- (b2+b4+…+b2n)=-·n(+)=- (2n2+3n)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网