题目内容
cos38°sin98°-cos52°sin188°的值为( )
分析:先通过诱导公式将cos52°sin188°化为sin38°cos98°,再应用两角差的正弦计算即可.
解答:解:cos38°sin98°-cos52°sin188°
=cos38°sin98°-cos(90°-38°)sin(90°+98°)
=cos38°sin98°-sin38°cos98°
=sin(98°-38°)
=sin60°
=
故选C.
=cos38°sin98°-cos(90°-38°)sin(90°+98°)
=cos38°sin98°-sin38°cos98°
=sin(98°-38°)
=sin60°
=
| ||
| 2 |
故选C.
点评:本题主要考查了三角函数诱导公式和两角差的正弦公式的应用.属于基础题
练习册系列答案
相关题目
sin
π,cos
π,
π的大小关系是( )
| 3 |
| 8 |
| 3 |
| 8 |
| 3 |
| 8 |
A、sin
| ||||||
B、sin
| ||||||
C、cos
| ||||||
D、cos
|
设a=
(sin56°-cos56°),b=cos50°cos128°+cos40°cos38°,c=
,d=
(cos80°-2cos250°+1),则a,b,c,d的大小关系为( )
| ||
| 2 |
| 1-tan240°30′ |
| 1+tan240°30′ |
| 1 |
| 2 |
| A、a>b>d>c |
| B、b>a>d>c |
| C、d>a>b>c |
| D、c>a>d>b |