题目内容

11.已知$A(cosα,\sqrt{3}sinα),B(2cosβ,\sqrt{3}sinβ),C(-1,0)$是平面上三个不同的点,且满足关系$\overrightarrow{CA}=λ\overrightarrow{BC}$,则实数λ的取值范围是[-2,1],λ≠0..

分析 利用向量共线定理可得:1+cosα=λ(-1-2cosβ),$\sqrt{3}$sinα=-λ$\sqrt{3}$sinβ,利用1=cos2α+sin2α,化为:λ=$\frac{4cosβ+2}{3co{s}^{2}β+4cosβ+2}$,令2cosβ+1=t∈[-1,3],可得λ=$\frac{8t}{3{t}^{2}+2t+3}$=f(t),利用导数研究其单调性极值与最值即可得出.

解答 解:∵$\overrightarrow{CA}=λ\overrightarrow{BC}$,∴$(cosα+1,\sqrt{3}sinα)$=λ$(-1-2cosβ,-\sqrt{3}sinβ)$,
∴1+cosα=λ(-1-2cosβ),$\sqrt{3}$sinα=-λ$\sqrt{3}$sinβ,
∴1=cos2α+sin2α=[λ(-1-2cosβ)-1]2+(-λsinβ)2
化为:λ=$\frac{4cosβ+2}{3co{s}^{2}β+4cosβ+2}$,
令2cosβ+1=t∈[-1,3].
则λ=$\frac{8t}{3{t}^{2}+2t+3}$=f(t),
f′(t)=$\frac{-24(t+1)(t-1)}{(3{t}^{2}+2t+3)^{2}}$,
可知:t=1时,函数f(t)取得最大值,f(1)=1.
又f(-1)=-2,f(3)=$\frac{2}{3}$.
∴λ∈[-2,1],
由于t=0时,λ=0,点A与C重合,舍去.
∴λ∈[-2,1],λ≠0.
故答案为:[-2,1],λ≠0.

点评 本题考查了向量共线定理、平方共线、利用导数研究其单调性极值与最值,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网