题目内容
20.曲线ρ=5sinθ表示的曲线方程是( )| A. | 直线 | B. | 圆 | C. | 椭圆 | D. | 抛物线 |
分析 利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\\{{ρ}^{2}={x}^{2}+{y}^{2}}\end{array}\right.$即可化为直角坐标方程,进而判断出结论.
解答 解:曲线ρ=5sinθ即ρ2=5ρsinθ,化为x2+y2=5y,配方为${x}^{2}+(y-\frac{5}{2})^{2}$=$\frac{25}{4}$.
∴曲线方程表示的圆,圆心为$(0,\frac{5}{2})$,半径为$\frac{5}{2}$.
故选:B.
点评 本题考查了极坐标化为直角坐标方程的方法,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
10.“$\overrightarrow{AB}$+$\overrightarrow{AD}$=$\overrightarrow{AC}$,且|$\overrightarrow{AB}$|=|$\overrightarrow{AD}$|”是“四边形ABCD为菱形”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
11.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1内有两点A(2,2),B(3,0),P为椭圆上任意一点,则|PA|+$\frac{5}{3}$|PB|的最小值为( )
| A. | $\frac{25}{3}$ | B. | $\frac{25}{6}$ | C. | 4 | D. | $\frac{19}{3}$ |
9.实轴长为2,虚轴长为4的双曲线的标准方程是( )
| A. | ${x^2}-\frac{y^2}{4}=1$ | B. | ${y^2}-\frac{x^2}{4}=1$ | ||
| C. | $\frac{x^2}{4}-\frac{y^2}{16}=1$,或$\frac{y^2}{4}-\frac{x^2}{16}=1$ | D. | ${x^2}-\frac{y^2}{4}=1$,或${y^2}-\frac{x^2}{4}=1$ |
10.甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分.两人4局的得分情况如下:
(Ⅰ)已知在乙的4局比赛中随机选取1局时,此局得分小于6分的概率不为零,且在4局比赛中,乙的平均得分高于甲的平均得分,求x+y的值;
(Ⅱ)如果x=6,y=10,从甲、乙两人的4局比赛中随机各选取1局,并将其得分分别记为a,b,求a≥b的概率;
(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x的所有可能取值.(结论不要求证明)
| 甲 | 6 | 6 | 9 | 9 |
| 乙 | 7 | 9 | x | y |
(Ⅱ)如果x=6,y=10,从甲、乙两人的4局比赛中随机各选取1局,并将其得分分别记为a,b,求a≥b的概率;
(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x的所有可能取值.(结论不要求证明)