题目内容
已知tan(α+β)=
,tan(β-
)=
,则sin(
+α)•sin(
-α)=
.
| 1 |
| 2 |
| π |
| 4 |
| 1 |
| 3 |
| π |
| 4 |
| π |
| 4 |
| 7 |
| 50 |
| 7 |
| 50 |
分析:利用拆分角,写成α+
=α+β-(β-
),α=α+
-
,利用两角和差的正切公式即可得出tanα,把要求的sin(
+α)•sin(
-α)展开,利用“弦化切”即可得出.
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
解答:解:∵tan(α+β)=
,tan(β-
)=
,∴tan(α+
)=tan[(α+β)-(β-
)]=
=
=
.
∴tanα=tan(α+
-
)=
=
=-
.
∴sin(
+α)•sin(
-α)=
(cosα+sinα)•
(cosα-sinα)=
(cos2α-sin2α)=
×
=
×
=
×
=
.
故答案为
.
| 1 |
| 2 |
| π |
| 4 |
| 1 |
| 3 |
| π |
| 4 |
| π |
| 4 |
tan(α+β)-tan(β-
| ||
1+tan(α+β)tan(β-
|
| ||||
1+
|
| 1 |
| 7 |
∴tanα=tan(α+
| π |
| 4 |
| π |
| 4 |
tan(α+
| ||||
1+tan(α+
|
| ||
1+
|
| 3 |
| 4 |
∴sin(
| π |
| 4 |
| π |
| 4 |
| ||
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| cos2α-sin2α |
| cos2α+sin2α |
| 1 |
| 2 |
| 1-tan2α |
| 1+tan2α |
| 1 |
| 2 |
1-(-
| ||
1+(-
|
| 7 |
| 50 |
故答案为
| 7 |
| 50 |
点评:熟练掌握拆分角的方法、两角和差的正弦、正切公式、“弦化切”的方法是解题的关键.
练习册系列答案
相关题目
已知tan(θ+
)=-3,则sin2θ+sinθcosθ-2cos2θ=( )
| π |
| 4 |
A、-
| ||
B、
| ||
C、-
| ||
D、
|