题目内容
19.已知等差数列{an}的首项为1,公差为2,则数列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n项和Sn=$\frac{n}{2n+1}$.分析 由an=2n-1.可得$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.利用“裂项求和”方法即可得出.
解答 解:∵an=1+2(n-1)=2n-1.
∴$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.
数列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n项和Sn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$
=$\frac{n}{2n+1}$.
故答案为:$\frac{n}{2n+1}$.
点评 本题考查了等差数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
9.已知圆(x-1)2+y2=4内一点P(2,1),则过P点的直径所在的直线方程是( )
| A. | x-y-1=0 | B. | x+y-3=0 | C. | x+y+3=0 | D. | x=2 |
7.函数$f(x)=\frac{{{e^x}-{e^{-x}}}}{2},x∈R$,当$0≤θ≤\frac{π}{2}$时,f(msinθ)+f(1-m)>0恒成立,则实数m的取值范围是(-∞,1].
14.已知实数x,y满足$\left\{{\begin{array}{l}{x+y≥4}\\{x-y≤2}\\{3y-x≤4}\end{array}}\right.$,则$\frac{y}{x}$的最小值为( )
| A. | 1 | B. | $\frac{1}{3}$ | C. | $\frac{3}{5}$ | D. | $\frac{1}{4}$ |
4.命题p:?x<0,2x>x,命题q:?x∈R,x2+x+1<0,则下列命题正确的是( )
| A. | (¬p)∨q为真 | B. | p∨q为真 | C. | p∧(¬q)为假 | D. | (¬p)∧(¬q)为真 |