题目内容

20.已知圆M:x2+y2-4x-8y+4=0,若点P是直线3x+4y+8=0上的动点,过点P作直线PA、PB与圆M相切,A、B为切点.则四边形PAMB面积的最小值为(  )
A.8$\sqrt{5}$B.4$\sqrt{5}$C.12D.24

分析 由题意知:SPAMB=2×2S△PAM=2×$\frac{1}{2}MB×PB$=4$\sqrt{P{M}^{2}-16}$,利用PM的最小值等于点M到直线3x+4y+8=0的距离,即可求得结论.

解答 解:由题意知:圆M:x2+y2-4x-8y+4=0,圆心坐标为M(2,4),半径为4.
SPAMB=2S△PAM=2×$\frac{1}{2}MB×PB$=4$\sqrt{P{M}^{2}-16}$.
∵PM的最小值等于点M到直线3x+4y+8=0的距离,
∴PMmin=$\frac{6+16+8}{5}$=6,
∴(SPAMBmin=4$\sqrt{36-16}$=8$\sqrt{5}$,
即四边形PAMB的面积的最小值为8$\sqrt{5}$.
故选A.

点评 本题考查直线与圆的位置关系,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网