题目内容

如图,在棱长为a的正方体ABCD-A1B1C1D1中,M、N分别是AA1、D1C1的中点,过D、M、N三点的平面与正方体的下底面相交于直线l;
(1)画出直线l;
(2)设l∩A1B1=P,求PB1的长;
(3)求D到l的距离.
(1)连接DM并延长交D1A1的延长线于Q.连接NQ,
则NQ即为所求的直线l.
(2)设QN∩A1B1=P,△A1MQ≌△MAD,
∴A1Q=AD=A1D1,A1是QD1的中点.
∴A1P=
1
2
D1N=
a
4
.∴PB1=
3
4
a.
(3)作D1H⊥l于H,连接DH,可证明l⊥平面DD1H,则DH⊥l,则DH的长就是D到l的距离.
在Rt△QD1N中,两直角边D1N=
a
2
,D1Q=2a,斜边QN=
17
2
a
,∴D1H•QN=D1N•D1Q,即D1H=
2
17
17
a
,DH=
(
2
17
17
a)
2
+a2
=
357
17
a
,∴D1到l的距离为
357
17
a
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网