题目内容
| x2 |
| a2 |
| y2 |
| b2 |
(Ⅰ)求椭圆C的方程;
(Ⅱ)若记△AMB,△ANB的面积分别为S1,S2求
| S1 |
| S2 |
分析:(Ⅰ)令P(4,y0),F(c,0),a=2,A(-2,0),B(2,0).由2kPF=kPA+kPB,知
=
+
,由此能得到椭圆C的方程.
(Ⅱ)令M(x1,y1),N(x2,y2),
得(3m2+4)y2=6my-9=0y2+6my-9=0,再由韦达定理和三角形的面积公式进行求解.
| 2y0 |
| 4-c |
| y0 |
| 4+2 |
| y0 |
| 4-2 |
(Ⅱ)令M(x1,y1),N(x2,y2),
|
解答:解:(Ⅰ)令P(4,y0),F(c,0),a=2,A(-2,0),B(2,0).
∵2kPF=kPA+kPB,∴
=
+
,
∴c=1,b2=3,
∴
+
=1,
(Ⅱ)令M(x1,y1),N(x2,y2),
得
(3m2+4)y2=6my-9=0y2+6my-9=0,
y1+y2=
,①
y1y2 =
,②(9分)
①2/②得
+
+2=
,令t=
,(11分)
则|t|+|
|=|t+
|=
=
-
,
∴2≤|t|+|
| <
,即
<|t|<3.(13分)
∵
=
=|t|,
∴
∈(
,3).(15分)
∵2kPF=kPA+kPB,∴
| 2y0 |
| 4-c |
| y0 |
| 4+2 |
| y0 |
| 4-2 |
∴c=1,b2=3,
∴
| x2 |
| 4 |
| y2 |
| 3 |
(Ⅱ)令M(x1,y1),N(x2,y2),
|
(3m2+4)y2=6my-9=0y2+6my-9=0,
y1+y2=
| -6m |
| 3m2+4 |
y1y2 =
| -9 |
| 3m2+4 |
①2/②得
| y1 |
| y2 |
| y2 |
| y1 |
| -4m2 |
| 3m2+4 |
| y1 |
| y2 |
则|t|+|
| 1 |
| t |
| 1 |
| t |
| 10m2+8 |
| 3m2+4 |
| 10 |
| 3 |
| ||
| 3m2+4 |
∴2≤|t|+|
| 1 |
| t |
| 10 |
| 3 |
| 1 |
| 3 |
∵
| S△AMB |
| S△ANB |
| ||
|
∴
| S1 |
| S2 |
| 1 |
| 3 |
点评:本题考查椭圆方程的求法和三角形面积比值的取值范围的求法,解题时要认真审题,注意韦达定理的合理运用.
练习册系列答案
相关题目