题目内容
3.P是抛物线y2=3x上的点,则点P到直线3x+4y+9=0的距离的最小值为1.分析 设P(x,y),求出P到直线3x+4y+9=0距离,利用配方法求最值.
解答 解:设P(x,y),则P到直线3x+4y+9=0距离为d=$\frac{|3x+4y+9|}{\sqrt{{3}^{2}+{4}^{2}}}$=$\frac{|(y+2)^{2}+5|}{5}$
∴y=-2时,P到直线3x+4y+9=0距离的最小值为1.
故答案为:1.
点评 本题考查直线与抛物线的位置关系,考查点到直线的距离的运用,考查配方法,正确运用点到直线的距离公式是关键.
练习册系列答案
相关题目
18.已知数列{an}的前n项和Sn=$\frac{1}{2}$n(n+1),n∈N*,bn=3n+(-1)n-1an,则数列{bn}的前2n+1项和为( )
| A. | $\frac{{3}^{2n+2}-1}{2}$+n | B. | $\frac{1}{2}$•32n+2+n+$\frac{1}{2}$ | C. | $\frac{{3}^{2n+2}-1}{2}$-n | D. | $\frac{1}{2}$•32n+2-n+$\frac{3}{2}$ |
12.已知函数f(x)=3tanωx+1,若对任意x1,x2∈(-$\frac{π}{3}$,$\frac{π}{4}$)且x1≠x2,均有[f(x1)-f(x2)](x1-x2)<0成立.则实数ω的取值范围是( )
| A. | -$\frac{3}{2}$≤ω≤$\frac{3}{2}$ | B. | -$\frac{3}{2}$≤ω≤0 | C. | -2≤ω<0 | D. | -2≤ω≤2 |